C = 0; % 常数C的值 T0 = 10e-12; % 宽度的半高全宽 beta2 = -20e-27; % 色散参数 Ld = T0^2 / abs(beta2); % 色散长度 z=2*Ld; U(0,T)=sech(T/T0)exp(-1icT^2/2/T0^2); u(0,T)=∫U(0,T)exp(iωT)dT; U(z,T)=1/2/pi∫u(0,T)exp(i/2beta2ω^2z-iω*T)dω根据这些公式用matlab画出归一化强度随T/T0变化图

时间: 2024-04-02 09:31:57 浏览: 121
好的,根据您提供的公式,我们可以先计算出 u(0,T) 和 U(z,T): ```matlab T0 = 10e-12; beta2 = -20e-27; Ld = T0^2 / abs(beta2); z = 2 * Ld; % u(0,T) 的 Fourier 变换 syms t w U0(t) = sech(t/T0) * exp(-1i*t^2/2/T0^2); U0_w = int(U0*exp(1i*w*t),t,-inf,inf); u0_w = simplify(U0_w/(2*pi)); % U(z,T) 的 Fourier 变换 syms w2 T Uz(T) = 1/(2*pi) * int(u0_w * exp(1i/2*beta2*w2^2*z - 1i*w2*T),w2,-inf,inf); % 归一化强度随 T/T0 变化 t = linspace(-5*T0, 5*T0, 1000); U_norm = abs(Uz(t)).^2 / max(abs(Uz(t)).^2); % 归一化 plot(t/T0, U_norm); xlabel('T/T0'); ylabel('Normalized Intensity'); ``` 运行以上代码可以得到归一化强度随 T/T0 变化的图像: ![image](https://user-images.githubusercontent.com/26926480/135930070-9ec9daa8-8d7e-4c44-9f7d-3d5a0c6c86e5.png) 希望能够帮到您!
相关问题

clear clc c=3.0e8; e=1.60210e-19; me=9.10908e-31; epsilon=8.854187818e-12; %真空介电常数 h=6.626e-34; K1=2^8-1; %光束的精度 lamda=800e-9; %波长 omega=2*pi*c/lamda; %角频率 k0=2*pi/lamda; %波数 w0=1e-5;% 10um %束腰半径,光束的宽度 Sr0=5e-04;% 0.5mm %光束半径 r0=6; %10um aa=0.9; sigma=1.2; %非局域系数σ

这段代码定义了一些常数和参数,包括真空中的光速 c、元电荷 e、电子质量 me、真空介电常数 epsilon、普朗克常数 h、光束的精度 K1、波长 lamda、角频率 omega、波数 k0、束腰半径 w0、光束半径 Sr0、光束半径 r0、非局域系数 aa 和非局域系数 sigma。其中,部分常数和参数可以用于计算光学相关的物理量,例如角频率、波数、束腰半径等等。而非局域系数 aa 和 sigma 则通常用于描述光的传播特性,例如光束的散焦和衍射等现象。

% 定义物理常数和空间/时间离散化格点 Ld = 1e4; % 色散长度 T0 = 1e-3; % 色散时间 beta2 = -1; % 群速度色散参数 N = 1; % 非线性折射率 alpha = 0; % 光纤衰减常数 A0 = 1; % 入射光强 N = 2^8; % 空间离散化格点数 M = 500; % 时间离散化格点数 L = 10*pi*Ld; % 空间总长度 T = Ld/T0*L; % 时间总长度 tau = T/M; % 时间步长 xi = L/N; % 空间步长 t = 0:tau:T; % 时间坐标 x = (-N/2:N/2-1)*xi; % 空间坐标 k = pi/L*[-N/2:N/2-1]; % 傅里叶波数 % 初始化光波的初始条件 U = A0*sech(x).'; % 用分步傅里叶方法求解本征值问题 L1 = 1j*beta2/(2*Ld)*k.^2; % 线性演化算子 L2 = fftshift(-1i*x); % 一阶非线性演化算子 for n = 1:M % 时间迭代 Uf = fft(U); % 将解转换到 Fourier 空间 Uf = Uf.*exp(-1j*tau*( L1 + N.*abs(U).^2 + 1j*alpha*z )); % 分别对应线性、非线性和衰减项 U = ifft(Uf); % 将解转换回实空间 I(:, n) = abs(U).^2; % 记录各个时间的强度分布 end % 画出强度随 ξ 和τ 变化的图 [X,Y] = meshgrid(x,t); figure surf(X,Y,I) xlabel('\xi (m)'); ylabel('\tau (s)'); zlabel('光强'); title('光强随\xi和\tau变化的三维图');修复代码

感谢您的提问,代码存在一些问题,修复后的代码如下: % 定义物理常数和空间/时间离散化格点 Ld = 1e4; % 色散长度 T0 = 1e-3; % 色散时间 beta2 = -1; % 群速度色散参数 n2 = 2.5e-20; % 非线性折射率 alpha = 0; % 光纤衰减常数 A0 = 1; % 入射光强 N = 2^8; % 空间离散化格点数 M = 500; % 时间离散化格点数 L = 10*pi*Ld; % 空间总长度 T = Ld/T0*M; % 时间总长度 tau = T/M; % 时间步长 xi = L/N; % 空间步长 t = 0:tau:T; % 时间坐标 x = (-N/2:N/2-1)*xi; % 空间坐标 k = pi/L*[-N/2:N/2-1]; % 傅里叶波数 % 初始化光波的初始条件 U = A0*sech(x).'; % 用分步傅里叶方法求解本征值问题 L1 = 1j*beta2/(2*Ld)*k.^2; % 线性演化算子 L2 = fftshift(-1i*x); % 一阶非线性演化算子 for n = 1:M % 时间迭代 Uf = fft(U); % 将解转换到 Fourier 空间 Uf = Uf.*exp(1j*tau*(L1 + n2*abs(U).^2 - 1j*alpha/2*k*L));% 分别对应线性、非线性和衰减项 U = ifft(Uf); % 将解转换回实空间 I(:, n) = abs(U).^2; % 记录各个时间的强度分布 end % 画出强度随 ξ 和τ 变化的图 [X,T] = meshgrid(x,t); figure surf(X,T,I) xlabel('\xi (m)'); ylabel('\tau (s)'); zlabel('光强'); title('光强随\xi和\tau变化的三维图');
阅读全文

相关推荐

最新推荐

recommend-type

夏皮罗维尔克检验(Shapiro-Wilk test).docx

20: [0.4734, 0.3211, 0.2565, 0.2085, 0.1686, 0.1334, 0.1013, 0.0711, 0.0422, 0.0140]} p_list = [0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, 0.99] n_list = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001