负权有向图的多条最短路径计算,依据最短路径进行边介数的计算python实现
时间: 2024-04-28 09:02:26 浏览: 103
Python实现的多叉树寻找最短路径算法示例
以下是一个基于Dijkstra算法的负权有向图多条最短路径计算的Python实现:
```python
import heapq
def dijkstra(graph, start):
# 初始化距离和前驱字典
dist = {node: float('inf') for node in graph}
dist[start] = 0
prev = {node: None for node in graph}
# 初始化堆和visited集合
heap = [(0, start)]
visited = set()
while heap:
# 取出堆顶节点并标记为visited
(curr_dist, curr_node) = heapq.heappop(heap)
visited.add(curr_node)
# 遍历当前节点的所有邻居
for neighbor, weight in graph[curr_node].items():
if neighbor not in visited:
# 更新邻居节点的距离和前驱
new_dist = dist[curr_node] + weight
if new_dist < dist[neighbor]:
dist[neighbor] = new_dist
prev[neighbor] = curr_node
heapq.heappush(heap, (new_dist, neighbor))
return dist, prev
def get_shortest_paths(graph, start, end, num_paths):
# 使用Dijkstra算法计算最短路径
dist, prev = dijkstra(graph, start)
# 初始化结果列表和堆
paths = []
heap = [(dist[end], [end])]
while heap and len(paths) < num_paths:
# 取出堆顶路径
(curr_dist, curr_path) = heapq.heappop(heap)
# 如果当前路径的最后一个节点就是目标节点,加入结果列表
if curr_path[-1] == start:
paths.append(curr_path[::-1])
else:
# 遍历当前路径的前驱节点
for prev_node in graph[curr_path[-1]]:
if prev_node not in curr_path:
# 创建新路径并加入堆
new_path = curr_path + [prev_node]
new_dist = curr_dist - graph[curr_path[-1]][prev_node]
heapq.heappush(heap, (new_dist, new_path))
return paths
def calculate_betweenness(graph):
# 初始化边介数字典
betweenness = {edge: 0 for edge in graph.edges()}
# 遍历所有节点对
for node in graph:
for path in get_shortest_paths(graph, node, node, len(graph)):
# 遍历路径上的所有边,更新边介数
for i in range(len(path)-1):
edge = (path[i], path[i+1])
betweenness[edge] += 1
# 对所有边介数进行归一化
total_paths = len(graph) * (len(graph) - 1)
for edge in betweenness:
betweenness[edge] /= 2 * total_paths
return betweenness
```
这个实现中,首先使用Dijkstra算法计算出起点到每个节点的最短距离和前驱节点。然后使用堆和visited集合,遍历所有从起点到终点的路径,并按照距离从小到大加入堆中。每次取出堆顶路径,如果路径的最后一个节点是终点,就将该路径加入结果列表。否则,遍历该路径的最后一个节点的前驱节点,创建新路径并加入堆中。最后,遍历所有路径上的边,更新边介数。
注意,这个实现中的边介数是基于无向图的,因此对于有向图中的每条边,需要将它的方向分别计算一次,然后将两个方向的结果相加。
阅读全文