用稀疏连接代替ResNet 18的全连接的pytorch代码
时间: 2024-03-01 19:53:17 浏览: 37
Resnet18、Resnet34的Pytorch版本
以下是使用稀疏连接代替 ResNet 18 全连接层的 PyTorch 代码示例:
```
import torch.nn as nn
import torch.nn.functional as F
class SparseResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(SparseResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.sparse = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.bn_sparse = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
sparse = self.bn_sparse(self.sparse(x))
out += sparse
out = F.relu(out)
return out
class SparseResNet18(nn.Module):
def __init__(self, num_classes=10):
super(SparseResNet18, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(SparseResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(SparseResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(SparseResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(SparseResidualBlock, 512, 2, stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在这个代码中,我们使用了 `nn.Conv2d` 和 `nn.BatchNorm2d` 来代替全连接层,同时引入了一个 `SparseResidualBlock` 类来实现稀疏连接。`SparseResidualBlock` 实现了一个残差块,其中包含了一个卷积层和一个扩展层,扩展层使用了 `nn.Conv2d` 来实现稀疏连接。`make_layer` 方法用来构建不同层的残差块,这里使用了四个残差块层,分别是 `layer1`、`layer2`、`layer3`、`layer4`。
最后,我们使用 `nn.AdaptiveAvgPool2d` 来进行自适应平均池化,然后使用一个全连接层 `nn.Linear` 将特征向量映射到类别空间。
阅读全文