waypoint_sub_ = nh.subscribe("/waypoint_generator/waypoints", 1, &KinoReplanFSM::waypointCallback, this);
时间: 2024-05-30 20:09:11 浏览: 168
这段代码是在ROS中订阅了一个名为"/waypoint_generator/waypoints"的主题,消息类型为1,回调函数为KinoReplanFSM类的waypointCallback函数。其中this指向当前对象的指针,用于在回调函数中访问对象的成员变量和成员函数。该代码的作用是接收来自"/waypoint_generator/waypoints"主题的消息并将其传递给waypointCallback函数进行处理。
相关问题
def __init__(self,client, carla_world, hud, actor_filter): self.client=client self.world = carla_world self.hud = hud self.map = self.world.get_map() self.player = None self.collision_sensor = None self.lane_invasion_sensor = None self.gnss_sensor = None self.camera_manager = None self._weather_presets = find_weather_presets() self._weather_index = 0 self._actor_filter = actor_filter self.restart() self.world.on_tick(hud.on_world_tick) start_waypoint = self.map.generate_waypoints(1)
这段代码定义了一个名为`__init__`的构造函数,用于初始化CarlaClient类的实例对象。该函数接受四个参数:client、carla_world、hud和actor_filter。其中client是一个CarlaClient类的实例,carla_world是Carla模拟器中的世界对象(World),hud是用于显示车辆运行状态的界面,actor_filter是一个用于筛选Actor的过滤器。在函数内部,首先将传入的参数保存到对应的成员变量中。然后通过`self.world.get_map()`获取当前世界(World)的地图(Map)对象,并将其保存到成员变量self.map中。接着将self.player、self.collision_sensor、self.lane_invasion_sensor、self.gnss_sensor和self.camera_manager初始化为None,这些成员变量将在后续的代码中被赋值。然后使用`find_weather_presets()`函数查找可用的天气预设,并将结果保存到成员变量self._weather_presets中。将成员变量self._weather_index初始化为0,表示当前使用的天气预设为列表中的第一个。将成员变量self._actor_filter初始化为传入的actor_filter参数。最后调用`self.restart()`方法来初始化车辆。在初始化完成后,通过`self.world.on_tick(hud.on_world_tick)`注册了一个回调函数,用于在每个模拟时间步长结束时更新车辆状态。最后使用`self.map.generate_waypoints(1)`获取起始点的Waypoint对象,并将其保存在变量start_waypoint中。
#include <iostream> #include <cmath> #include <ros/ros.h> #include <geometry_msgs/PoseStamped.h> #include <nav_msgs/Odometry.h> #include "plan_env/lec4.h" #include "ego_planner/TutorialGoal.h" using namespace std; ros::Subscriber odom_sub; ros::Publisher param_goal_pub; ros::ServiceClient client; int waypoint_num_; double waypoints_[50][3]; double spin_rate; // void OdomCallback(const nav_msgs::Odometry& msg) { ROS_WARN_ONCE("odom CB"); static int way_point_count = 0; if (way_point_count >= waypoint_num_) { ROS_WARN_ONCE("all points pub"); return; } float dist = std::sqrt(std::pow(waypoints_[way_point_count][0] - msg.pose.pose.position.x, 2) + std::pow(waypoints_[way_point_count][1] - msg.pose.pose.position.y, 2) + std::pow(waypoints_[way_point_count][2] - msg.pose.pose.position.z, 2)); //TODO /***your code for publishing drone goal***/ } int main(int argc, char** argv) { ros::init(argc, argv, "exercesie2_param_node"); ros::NodeHandle n("~"); odom_sub = n.subscribe("/odom", 10, OdomCallback); param_goal_pub = n.advertise<ego_planner::TutorialGoal>("/waypoint_generator/tutorial_goal", 10); //TODO /*your code for param reading*/ for(i) n.param("point_x", waypoints_ []); n.param("point_y", waypoints_10.0); n.param("point_z", waypoints_ 10.0); n.param("/spin_rate", spin_rate, 10.0); ros::Duration(0.5).sleep(); ros::Rate loop_rate(spin_rate); while (ros::ok()) { ros::spinOnce(); loop_rate.sleep(); } }补充完整这段代码
以下是补充完整的代码:
```cpp
#include <iostream>
#include <cmath>
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <nav_msgs/Odometry.h>
#include "plan_env/lec4.h"
#include "ego_planner/TutorialGoal.h"
using namespace std;
ros::Subscriber odom_sub;
ros::Publisher param_goal_pub;
ros::ServiceClient client;
int waypoint_num_;
double waypoints_[50][3];
double spin_rate;
//
void OdomCallback(const nav_msgs::Odometry& msg) {
ROS_WARN_ONCE("odom CB");
static int way_point_count = 0;
if (way_point_count >= waypoint_num_) {
ROS_WARN_ONCE("all points pub");
return;
}
float dist = std::sqrt(std::pow(waypoints_[way_point_count][0] - msg.pose.pose.position.x, 2) +
std::pow(waypoints_[way_point_count][1] - msg.pose.pose.position.y, 2) +
std::pow(waypoints_[way_point_count][2] - msg.pose.pose.position.z, 2));
//TODO
/***your code for publishing drone goal***/
if (dist < 0.1) {
ego_planner::TutorialGoal goal;
goal.point.x = waypoints_[way_point_count][0];
goal.point.y = waypoints_[way_point_count][1];
goal.point.z = waypoints_[way_point_count][2];
param_goal_pub.publish(goal);
way_point_count++;
}
}
int main(int argc, char** argv) {
ros::init(argc, argv, "exercesie2_param_node");
ros::NodeHandle n("~");
odom_sub = n.subscribe("/odom", 10, OdomCallback);
param_goal_pub = n.advertise<ego_planner::TutorialGoal>("/waypoint_generator/tutorial_goal", 10);
//TODO
/*your code for param reading*/
n.param("/waypoint_num", waypoint_num_, 0);
for (int i = 0; i < waypoint_num_; i++) {
string param_x = "/waypoint_" + to_string(i) + "/x";
string param_y = "/waypoint_" + to_string(i) + "/y";
string param_z = "/waypoint_" + to_string(i) + "/z";
n.param(param_x, waypoints_[i][0], 0.0);
n.param(param_y, waypoints_[i][1], 0.0);
n.param(param_z, waypoints_[i][2], 0.0);
}
n.param("/spin_rate", spin_rate, 10.0);
ros::Duration(0.5).sleep();
ros::Rate loop_rate(spin_rate);
while (ros::ok()) {
ros::spinOnce();
loop_rate.sleep();
}
}
```
这段代码是一个ROS节点,用于读取参数并发布无人机的目标位置。它通过订阅`/odom`话题获取当前无人机的位置信息,然后根据预设的目标点,计算当前位置与目标点之间的距离。当距离小于阈值时,发布下一个目标点作为无人机的目标位置。
在`main`函数中,我们首先初始化ROS节点,并设置参数服务器前缀为`~`。然后创建一个订阅器`odom_sub`,用于接收无人机的位置信息。创建一个发布器`param_goal_pub`,用于发布无人机的目标位置。接着从参数服务器中读取参数,包括目标点的数量`waypoint_num`和每个目标点的坐标。最后,设置循环的频率,并在循环中调用`ros::spinOnce()`来处理ROS的回调函数。
其中,`OdomCallback`是回调函数,用于处理接收到的无人机位置信息。在该函数中,我们首先判断是否已经发布了所有的目标点,如果是,则直接返回。否则,计算当前位置与目标点之间的距离`dist`。如果距离小于设定的阈值(这里设为0.1),则发布下一个目标点作为无人机的目标位置,并将目标点计数加1。
请根据实际需求修改其中的TODO部分,完成发布无人机目标位置的代码。
阅读全文