torchvision.transforms.Resize() 参数
时间: 2024-05-20 17:13:52 浏览: 169
`torchvision.transforms.Resize()` 函数常用的参数如下:
- `size`:调整后图像的大小,可以是一个整数或一个元组 `(h, w)`,表示高度和宽度。
- `interpolation`:插值方法,可以设置为 `PIL.Image.NEAREST`、`PIL.Image.BILINEAR`、`PIL.Image.BICUBIC` 或 `PIL.Image.LANCZOS`。默认为 `PIL.Image.BILINEAR`。
- `max_size`:按照比例调整图像大小,使得较大的边不超过指定的 `max_size`。可以是一个整数或一个元组 `(h, w)`,表示高度和宽度。默认为 `None`。
- `keep_aspect_ratio`:是否保持图像的纵横比。默认为 `False`。
- `pad_if_needed`:是否需要填充图像使其大小达到指定的大小。默认为 `False`。
- `padding_mode`:填充模式,可以设置为 `constant`、`edge`、`reflect` 或 `symmetric`。默认为 `constant`。
- `fill`:填充的值,当 `padding_mode` 为 `constant` 时使用。可以是一个整数或一个元组 `(R, G, B)`。
这些参数可以根据具体的需求进行调整。例如,如果想将图像调整为指定大小,并且保持纵横比,可以设置 `size` 为一个元组 `(h, w)`,并将 `keep_aspect_ratio` 设置为 `True`。
相关问题
torchvision.transforms.Resize() 参数
torchvision.transforms.Resize()函数的参数有以下几个:
- size:要调整到的目标尺寸。可以是一个整数,表示将较小的边调整为该大小,或者是一个元组 (height, width),表示调整为给定的高度和宽度。
- interpolation:插值方法。可以是以下几种选项之一:
- PIL.Image.NEAREST:最近邻插值。
- PIL.Image.BILINEAR:双线性插值。
- PIL.Image.BICUBIC:双三次插值。
- PIL.Image.LANCZOS:Lanczos插值。
默认值为PIL.Image.BILINEAR。
示例用法:
```python
from torchvision import transforms
resize = transforms.Resize(size=(224, 224), interpolation=Image.BICUBIC)
```
这个例子展示了如何将图像调整为大小为224×224像素的尺寸,并使用双三次插值进行插值。
torchvision.transforms.Resize() 参数
torchvision.transforms.Resize() 函数的参数是一个整数或者一个元组。整数表示将图像的短边缩放到指定大小,长边将按比例缩放。元组表示将图像的尺寸缩放到指定大小。例如:
- 如果参数是一个整数 n,那么图像将被缩放为短边为 n,长边按比例缩放。
- 如果参数是一个元组 (h, w),那么图像将被缩放为尺寸为 (h, w)。
示例用法:
```python
import torchvision.transforms as transforms
transform = transforms.Resize(256) # 将短边缩放为256,长边按比例缩放
transform = transforms.Resize((256, 256)) # 将图像尺寸缩放为 256x256
```
注意:在使用 torchvision.transforms.Resize() 函数时,可以将其作为数据预处理的一部分,用于调整输入图像的大小。
阅读全文