如何将logits 和 aux_logits的结果整合为一个2分类的张量结果

时间: 2024-10-07 16:03:12 浏览: 36
将`logits`和`aux_logits`整合成一个二分类(Binary Classification)张量结果,通常是在二分类任务中,你需要从一个多分类模型中选择一个特定类别作为正类,其余为负类。对于`logits`,这通常是通过softmax函数处理,得到每个类别的概率,然后找到概率最高的那个类作为正类。 例如,在`logits`上进行操作: ```python softmax_logits = F.softmax(logits, dim=1) binary_pred = torch.argmax(softmax_logits, dim=1).unsqueeze(1) # 取最大值所在的索引,并添加维度以便匹配形状 ``` 对于`aux_logits`,如果模型提供的话,你也可以采取类似的方式处理。如果没有特别说明,有些时候可能会忽略它们,因为主分类 logits 更重要。 如果需要二分类,你可以设置一个阈值,比如大于某个值的作为正类,小于等于该值的作为负类。比如: ```python threshold = 0.5 binary_pred = (softmax_logits[:, 1] > threshold).float() # 1代表正类,0代表负类 ``` 需要注意的是,这里的假设是最后一维代表类别的数量,如果是二分类,则通常最后一维为2。具体操作可能会因模型结构和需求而变化。
相关问题

将下面代码改为用checkpoint保存saver=tf.train.Saver() # 训练或预测 train = False # 模型文件路径 model_path = "model" if train: print("训练模式") # 训练初始化参数 # 定义输入和Label以填充容器 训练时dropout为0.25 train_feed_dict = { xs: x_train, ys: y_train, drop: 0.25 } # 训练学习1000次 for step in range(1000): with tf.GradientTape() as tape: logits_val = logits(train_feed_dict) loss_val = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(y_train, num_classes), logits=logits_val)) grads = tape.gradient(loss_val, logits.trainable_variables) optimizer.apply_gradients(zip(grads, logits.trainable_variables)) if step % 50 == 0: #每隔50次输出一次结果 print("step = {}\t mean loss = {}".format(step, loss_val)) # 保存模型 saver.save(logits, model_path) print("训练结束,保存模型到{}".format(model_path)) else: print("测试模式") # 测试载入参数 logits=tf.keras.models.load_model(model_path) print("从{}载入模型".format(model_path))

# 首先需要在计算图中定义一个变量来保存模型的全局步数 global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') # 在训练过程中需要增加global_step train_op = optimizer.apply_gradients(zip(grads, logits.trainable_variables), global_step=global_step) # 在定义saver时,指定要保存的变量和保存路径,注意不要在文件名中包含global_step变量 saver = tf.train.Saver(var_list=logits.trainable_variables, max_to_keep=3) # 最多保存3个模型 with tf.Session() as sess: if train: print("训练模式") # 恢复之前训练好的模型 latest_checkpoint = tf.train.latest_checkpoint(model_path) if latest_checkpoint: print("从{}载入模型".format(latest_checkpoint)) saver.restore(sess, latest_checkpoint) else: sess.run(tf.global_variables_initializer()) # 训练学习1000次 for step in range(1000): _, loss_val, global_step_val = sess.run([train_op, loss, global_step], feed_dict=train_feed_dict) if step % 50 == 0: print("step = {}\t mean loss = {}".format(global_step_val, loss_val)) # 每隔100步保存一次模型 if global_step_val % 100 == 0: saver.save(sess, model_path + "/model", global_step=global_step_val) print("保存模型到{}-{}".format(model_path, global_step_val)) else: print("测试模式") # 载入最新的模型 latest_checkpoint = tf.train.latest_checkpoint(model_path) if latest_checkpoint: print("从{}载入模型".format(latest_checkpoint)) saver.restore(sess, latest_checkpoint) else: print("没有找到模型文件") exit() # 进行预测

我是一个初学者,请你帮我解释以下这段代码的每个变量的含义和每句代码的语法:def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k # torch.topk()返回最后一维最大的top_k个元素,返回值为二维(values,indices) # ...表示其他维度由计算机自行推断 indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits

这段代码的作用是根据给定的top_k和top_p值,过滤掉logits分数较低的预测结果,从而生成更准确的预测结果。下面是每个变量的含义和每句代码的语法: 1. `logits`:一个张量,表示对应词汇表中单词的logits分数。 2. `top_k`:一个整数,表示要保留的最高可能性预测的数量。 3. `top_p`:一个浮点数,表示要保留的累积概率质量。 4. `filter_value`:一个浮点数,用于过滤掉不想要的预测。默认值为负无穷大。 5. `assert`:断言语句,用于判断logits张量的维度是否为1,如果维度不为1,程序将会报错并停止运行。 6. `logits.dim()`:张量的维度数。 7. `top_k = min(top_k, logits.size(-1))`:将top_k值与logits张量的最后一维大小进行比较,保证top_k值不会大于张量的维度。 8. `if top_k > 0:`:如果指定了top_k值,则进行以下操作。 9. `indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]`:返回logits张量中最后一维的最大值的top_k个元素,并将剩余元素的值设置为过滤值, 然后返回不需要的结果的索引。 10. `logits[indices_to_remove] = filter_value`:将logits张量中的索引为indices_to_remove的元素的值设置为过滤值。 11. `if top_p > 0.0:`:如果指定了top_p值,则进行以下操作。 12. `sorted_logits, sorted_indices = torch.sort(logits, descending=True)`:按照降序对logits张量进行排序,并返回排序后的结果和对应的索引。 13. `cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)`:计算softmax函数的累积概率值。 14. `sorted_indices_to_remove = cumulative_probs > top_p`:返回累积概率大于top_p的索引。 15. `sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()`:将索引向右移一位,保留第一个索引。 16. `sorted_indices_to_remove[..., 0] = 0`:将第一个索引设置为0。 17. `indices_to_remove = sorted_indices[sorted_indices_to_remove]`:返回不需要的结果的索引。 18. `logits[indices_to_remove] = filter_value`:将logits张量中的索引为indices_to_remove的元素的值设置为过滤值。 19. `return logits`:返回过滤后的logits张量。
阅读全文

相关推荐

最新推荐

recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

vb人事管理系统全套(源代码+论文+开题报告+实习报告)(2024zq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

vb试题库自动组卷系统(源代码+论文)(2024nc).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决