方向余弦阵到四元数的转换
时间: 2024-04-04 14:32:03 浏览: 338
方向余弦阵到四元数的转换可以通过以下步骤实现:
1. 计算矩阵的迹:$tr(\mathbf{C}) = c_{11} + c_{22} + c_{33}$。
2. 计算矩阵的对角线元素:$c_{ii}$。
3. 计算四元数的 $w$ 分量:$w = \sqrt{1 + tr(\mathbf{C})}$。
4. 计算四元数的 $x$、$y$、$z$ 分量:
$$
\begin{aligned}
x &= \frac{c_{23} - c_{32}}{4w}, \\
y &= \frac{c_{31} - c_{13}}{4w}, \\
z &= \frac{c_{12} - c_{21}}{4w}.
\end{aligned}
$$
5. 归一化四元数:$q = \frac{1}{\sqrt{w^2 + x^2 + y^2 + z^2}}(w, x, y, z)$。
其中,$\mathbf{C}$ 是方向余弦阵,$q$ 是对应的四元数。需要注意的是,上述计算方法中的矩阵和四元数都是单位的。
相关问题
Python编程实现欧拉角、方向余弦阵、四元数及等效旋转矢量之间的相互转换
欧拉角、方向余弦阵、四元数和等效旋转矢量都是描述旋转的方式。它们之间的相互转换可以通过数学计算来实现。下面是Python代码实现这些转换的示例:
1. 将欧拉角转换为方向余弦阵
```
import numpy as np
# 定义欧拉角
roll = np.radians(30)
pitch = np.radians(45)
yaw = np.radians(60)
# 计算方向余弦阵
R_x = np.array([[1, 0, 0],
[0, np.cos(roll), -np.sin(roll)],
[0, np.sin(roll), np.cos(roll)]])
R_y = np.array([[np.cos(pitch), 0, np.sin(pitch)],
[0, 1, 0],
[-np.sin(pitch), 0, np.cos(pitch)]])
R_z = np.array([[np.cos(yaw), -np.sin(yaw), 0],
[np.sin(yaw), np.cos(yaw), 0],
[0, 0, 1]])
R_xyz = np.dot(R_z, np.dot(R_y, R_x))
```
2. 将方向余弦阵转换为欧拉角
```
import math
# 定义方向余弦阵
R_xyz = np.array([[0.866, -0.354, 0.354],
[0.354, 0.866, -0.354],
[0.354, 0.354, 0.866]])
# 计算欧拉角
pitch = -math.asin(R_xyz[2, 0])
roll = math.atan2(R_xyz[2, 1], R_xyz[2, 2])
yaw = math.atan2(R_xyz[1, 0], R_xyz[0, 0])
pitch_deg = math.degrees(pitch)
roll_deg = math.degrees(roll)
yaw_deg = math.degrees(yaw)
```
3. 将方向余弦阵转换为四元数
```
# 定义方向余弦阵
R_xyz = np.array([[0.866, -0.354, 0.354],
[0.354, 0.866, -0.354],
[0.354, 0.354, 0.866]])
# 计算四元数
q_w = math.sqrt(1 + R_xyz[0, 0] + R_xyz[1, 1] + R_xyz[2, 2]) / 2
q_x = (R_xyz[2, 1] - R_xyz[1, 2]) / (4 * q_w)
q_y = (R_xyz[0, 2] - R_xyz[2, 0]) / (4 * q_w)
q_z = (R_xyz[1, 0] - R_xyz[0, 1]) / (4 * q_w)
```
4. 将四元数转换为方向余弦阵
```
# 定义四元数
q_w = 0.866
q_x = -0.354
q_y = 0.354
q_z = 0.354
# 计算方向余弦阵
R_xyz = np.array([[1 - 2 * (q_y ** 2 + q_z ** 2), 2 * (q_x * q_y - q_w * q_z), 2 * (q_x * q_z + q_w * q_y)],
[2 * (q_x * q_y + q_w * q_z), 1 - 2 * (q_x ** 2 + q_z ** 2), 2 * (q_y * q_z - q_w * q_x)],
[2 * (q_x * q_z - q_w * q_y), 2 * (q_y * q_z + q_w * q_x), 1 - 2 * (q_x ** 2 + q_y ** 2)]])
```
5. 将四元数转换为等效旋转矢量
```
# 定义四元数
q_w = 0.866
q_x = -0.354
q_y = 0.354
q_z = 0.354
# 计算等效旋转矢量
theta = 2 * math.acos(q_w)
sin_theta = math.sin(theta / 2)
v_x = q_x / sin_theta
v_y = q_y / sin_theta
v_z = q_z / sin_theta
```
使用matlab编写将一个三维方向余弦矩阵转换为四元数,并对四元数进行单位化
在MATLAB中,可以使用以下代码将一个3x3的方向余弦矩阵转换为四元数:
```matlab
function q = dcm2quat(dcm)
% DCM2QUAT Convert direction cosine matrix to quaternion
% q = DCM2QUAT(dcm) converts a 3x3 direction cosine matrix (DCM) to a 1x4
% quaternion. The DCM input represents the rotation from frame 2 to frame
% 1, where frame 1 is the global frame and frame 2 is the rotated frame.
%
% Reference: Eq. 2.65 and 2.67, "Quaternion Kinematics for the Error-State
% Kalman Filter", Joan Solà, 2017.
% Check input size
if any(size(dcm) ~= [3 3])
error('Input matrix must be 3x3.')
end
% Compute quaternion elements
q0 = 0.5 * sqrt(1 + dcm(1,1) + dcm(2,2) + dcm(3,3));
q1 = (dcm(3,2) - dcm(2,3)) / (4*q0);
q2 = (dcm(1,3) - dcm(3,1)) / (4*q0);
q3 = (dcm(2,1) - dcm(1,2)) / (4*q0);
% Return quaternion as a row vector
q = [q0 q1 q2 q3];
```
然后,可以使用以下代码将四元数单位化:
```matlab
function q_unit = quatnormalize(q)
% QUATNORMALIZE Normalize quaternion
% q_unit = QUATNORMALIZE(q) normalizes the quaternion q to have unit
% magnitude.
% Check input size
if any(size(q) ~= [1 4])
error('Input vector must be 1x4.')
end
% Compute quaternion magnitude
q_mag = norm(q);
% Normalize quaternion
q_unit = q / q_mag;
```
现在,您可以将这两个函数组合在一起,使用以下代码将方向余弦矩阵转换为单位四元数:
```matlab
% Example DCM
dcm = [0.7071 -0.7071 0; 0.7071 0.7071 0; 0 0 1];
% Convert DCM to quaternion
q = dcm2quat(dcm);
% Normalize quaternion
q_unit = quatnormalize(q);
```
阅读全文