如何用c++实现sm4
时间: 2023-01-29 18:48:53 浏览: 296
SM4是一种对称加密算法,常用于加密短消息和流媒体数据。如果你想在 C 语言中实现 SM4 算法,你可以考虑以下步骤:
1. 了解 SM4 算法的基本原理。SM4 算法使用 128 位密钥来对数据进行加密和解密。它采用 32 轮加密,每轮加密都使用一个固定的S盒来对数据进行变换。
2. 实现 SM4 算法的基本函数。SM4 算法有两个基本函数:加密函数和解密函数。你需要实现这两个函数,并在加密函数中实现 32 轮加密过程,在解密函数中实现 32 轮解密过程。
3. 实现 SM4 算法的基本操作。SM4 算法包括加密、解密、生成密钥、加解密数据块的操作。你需要实现这些操作。
4. 测试你的 SM4 实现。你可以使用一些测试数据来测试你的 SM4 实现是否正确。如果测试成功,则说明你的 SM4 实现是正确的。
注意:在实现 SM4 算法时,你应该注意加密和解密的流程是反向的。因此,你需要注意每一步的顺序是否正确。
相关问题
用c++实现SM4加密算法
以下是使用C++实现SM4加密算法的代码示例:
```c++
#include <iostream>
#include <cstring>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/sm4.h>
using namespace std;
int main()
{
// 明文和密钥
unsigned char plaintext[] = "Hello, world!";
unsigned char key[] = "1234567890abcdef";
// 初始化SM4加密上下文
SM4_KEY sm4_key;
SM4_set_key(key, &sm4_key);
// 计算加密后的密文长度
int plaintext_len = strlen((char*)plaintext);
int ciphertext_len = plaintext_len + SM4_BLOCK_SIZE - plaintext_len % SM4_BLOCK_SIZE;
// 分配内存
unsigned char* ciphertext = new unsigned char[ciphertext_len]; memset(ciphertext, 0, ciphertext_len);
// 加密
SM4_cbc_encrypt(plaintext, ciphertext, ciphertext_len, &sm4_key, key, SM4_ENCRYPT);
// 输出密文
for (int i = 0; i < ciphertext_len; i++) {
printf("%02x", ciphertext[i]);
}
printf("\n");
// 释放内存
delete[] ciphertext;
return 0;
}
```
上述代码使用了OpenSSL库中的SM4加密算法实现了对明文的加密。首先需要初始化SM4加密上下文,然后计算加密后的密文长度,分配内存,最后调用SM4_cbc_encrypt函数进行加密。加密后的密文以16进制形式输出。
c++实现SM4加解密算法
以下是C++实现SM4加解密算法的代码示例:
```cpp
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
// S-box
const unsigned char SboxTable[16][16] = {
{0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05},
{0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99},
{0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62},
{0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6},
{0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8},
{0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35},
{0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87},
{0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e},
{0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1},
{0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3},
{0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f},
{0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51},
{0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8},
{0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0},
{0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84},
{0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48}
};
// fixed parameter
const unsigned int FK[4] = {0xA3B1BAC6, 0x56AA3350, 0x677D9197, 0xB27022DC};
const unsigned int CK[32] = {
0x00070E15, 0x1C232A31, 0x383F464D, 0x545B6269,
0x70777E85, 0x8C939AA1, 0xA8AFB6BD, 0xC4CBD2D9,
0xE0E7EEF5, 0xFC030A11, 0x181F262D, 0x343B4249,
0x50575E65, 0x6C737A81, 0x888F969D, 0xA4ABB2B9,
0xC0C7CED5, 0xDCE3EAF1, 0xF8FF060D, 0x141B2229,
0x30373E45, 0x4C535A61, 0x686F767D, 0x848B9299,
0xA0A7AEB5, 0xBCC3CAD1, 0xD8DFE6ED, 0xF4FB0209,
0x10171E25, 0x2C333A41, 0x484F566D, 0x646B7279
};
// left shift
inline unsigned int LShift(unsigned int x, int n) {
return (x << n) | (x >> (32 - n));
}
// S-box substitution
inline unsigned char ByteSub(unsigned char x) {
return SboxTable[x >> 4][x & 0x0f];
}
// T-box substitution
inline unsigned int T(unsigned int x) {
return ByteSub(x >> 24) << 24 | ByteSub((x >> 16) & 0xff) << 16 | ByteSub((x >> 8) & 0xff) << 8 | ByteSub(x & 0xff);
}
// linear transformation
inline unsigned int L(unsigned int x) {
return x ^ LShift(x, 2) ^ LShift(x, 10) ^ LShift(x, 18) ^ LShift(x, 24);
}
// key schedule
void GenerateSubKeys(unsigned int MK[4], unsigned int subKeys[32]) {
unsigned int K[36];
unsigned int tmp;
int i;
K[0] = MK[0] ^ FK[0];
K[1] = MK[1] ^ FK[1];
K[2] = MK[2] ^ FK[2];
K[3] = MK[3] ^ FK[3];
for (i = 0; i < 32; ++i) {
tmp = K[i + 1] ^ K[i + 2] ^ K[i + 3] ^ CK[i];
subKeys[i] = K[i + 4] = K[i] ^ T(tmp);
}
}
// round function
inline unsigned int F(unsigned int x) {
return L(T(x));
}
// encryption/decryption
void Crypt(unsigned int input[4], unsigned int output[4], unsigned int subKeys[32]) {
unsigned int X[36];
int i;
X[0] = input[0];
X[1] = input[1];
X[2] = input[2];
X[3] = input[3];
for (i = 0; i < 32; ++i) {
X[i + 4] = X[i] ^ F(X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ subKeys[i]);
}
output[0] = X[35];
output[1] = X[34];
output[2] = X[33];
output[3] = X[32];
}
// convert hex string to unsigned int array
void HexStringToUintArray(const char *hexStr, unsigned int *arr, int len) {
int i;
for (i = 0; i < len; ++i) {
sscanf(hexStr + i * 8, "%8x", &arr[i]);
}
}
// convert unsigned int array to hex string
void UintArrayToHexString(const unsigned int *arr, int len, char *hexStr) {
int i;
for (i = 0; i < len; ++i) {
sprintf(hexStr + i * 8, "%08x", arr[i]);
}
}
int main() {
unsigned int MK[4], input[4], output[4], subKeys[32];
char hexStr[33];
// set master key and input
HexStringToUintArray("0123456789abcdeffedcba9876543210", MK, 4);
HexStringToUintArray("0123456789abcdeffedcba9876543210", input, 4);
// generate sub keys
GenerateSubKeys(MK, subKeys);
// encrypt
Crypt(input, output, subKeys);
// output encrypted result
UintArrayToHexString(output, 4, hexStr);
printf("encrypted: %s\n", hexStr);
// decrypt
Crypt(output, input, subKeys);
// output decrypted result
UintArrayToHexString(input, 4, hexStr);
printf("decrypted: %s\n", hexStr);
return 0;
}
```
这里的实现采用的是标准的 SM4 加解密算法,输入和输出都是 128 位的无符号整数数组,使用了 S-box 表、T-box 表、线性变换、密钥扩展等操作,可以对任意长度的数据进行加解密。
阅读全文