写一段python代码,已知两条平行线段的点坐标,计算两条线段的距离
时间: 2023-02-28 20:06:59 浏览: 211
您可以这样写代码:
```
import math
def distance_between_lines(A, B, C, D):
# A, B 是第一条线段的两个端点坐标
# C, D 是第二条线段的两个端点坐标
a_x, a_y = A
b_x, b_y = B
c_x, c_y = C
d_x, d_y = D
# 计算两条线段的向量差
u = (b_x - a_x, b_y - a_y)
v = (d_x - c_x, d_y - c_y)
# 计算两条线段的垂直向量
w = (-u[1], u[0])
# 计算两条线段间的距离
distance = abs(w[0] * (c_x - a_x) + w[1] * (c_y - a_y)) / math.sqrt(w[0] ** 2 + w[1] ** 2)
return distance
```
使用方法:
```
A = (0, 0)
B = (1, 1)
C = (2, 2)
D = (3, 3)
distance = distance_between_lines(A, B, C, D)
print("两条线段的距离为:", distance)
```
相关问题
用python实现 线段与线段相交于点,一个圆心位于点的圆与和相切。已知点的坐标和圆半径,需要编写程序计算圆与线段和线段的两个切点的坐标,弦长以及外距
您好,我可以回答这个问题。可以使用 Python 中的数学库来计算圆与线段和线段的两个切点的坐标,弦长以及外距。具体实现方法可以参考以下代码:
```python
import math
# 线段与线段相交于点的函数
def intersection(p1, p2, p3, p4):
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
if d == :
return None
x = ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4)) / d
y = ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4)) / d
if x < min(x1, x2) or x > max(x1, x2) or x < min(x3, x4) or x > max(x3, x4):
return None
if y < min(y1, y2) or y > max(y1, y2) or y < min(y3, y4) or y > max(y3, y4):
return None
return (x, y)
# 计算圆与线段和线段的两个切点的坐标,弦长以及外距的函数
def circle_line_intersection(p1, p2, center, radius):
x1, y1 = p1
x2, y2 = p2
xc, yc = center
dx = x2 - x1
dy = y2 - y1
a = dx**2 + dy**2
b = 2*dx*(x1-xc) + 2*dy*(y1-yc)
c = (x1-xc)**2 + (y1-yc)**2 - radius**2
delta = b**2 - 4*a*c
if delta < :
return None
t1 = (-b + math.sqrt(delta)) / (2*a)
t2 = (-b - math.sqrt(delta)) / (2*a)
if t1 < or t1 > 1:
t1 = None
if t2 < or t2 > 1:
t2 = None
p1 = None
p2 = None
if t1 is not None:
x = x1 + t1*dx
y = y1 + t1*dy
p1 = (x, y)
if t2 is not None:
x = x1 + t2*dx
y = y1 + t2*dy
p2 = (x, y)
if p1 is None and p2 is None:
return None
elif p1 is None:
return p2
elif p2 is None:
return p1
else:
d1 = math.sqrt((p1[]-xc)**2 + (p1[1]-yc)**2)
d2 = math.sqrt((p2[]-xc)**2 + (p2[1]-yc)**2)
chord = 2*math.sqrt(radius**2 - ((d1+d2)/2)**2)
distance = abs((p2[]-p1[])*(p1[1]-yc) - (p1[]-xc)*(p2[1]-p1[1])) / math.sqrt((p2[]-p1[])**2 + (p2[1]-p1[1])**2)
return p1, p2, chord, distance
# 示例
p1 = (, )
p2 = (1, 1)
center = (.5, .5)
radius = .5
result = circle_line_intersection(p1, p2, center, radius)
print(result)
```
希望能对您有所帮助。
用python写出如下要求代码:1已知同边两个点和线段长度绘制一个正方形
可以使用Python的turtle库来绘制正方形。以下是一个示例代码,其中`point1`和`point2`表示同边的两个点,`length`表示线段长度:
```python
import turtle
import math
# 定义两个点
point1 = (-100, 0)
point2 = (100, 0)
# 定义线段长度
length = 200
# 计算正方形的顶点坐标
angle = math.atan2(point2[1] - point1[1], point2[0] - point1[0])
x = point1[0] + length * math.cos(angle + math.pi / 4)
y = point1[1] + length * math.sin(angle + math.pi / 4)
vertex1 = (x, y)
x = point1[0] + length * math.cos(angle - math.pi / 4)
y = point1[1] + length * math.sin(angle - math.pi / 4)
vertex2 = (x, y)
x = point2[0] + length * math.cos(angle - math.pi / 4)
y = point2[1] + length * math.sin(angle - math.pi / 4)
vertex3 = (x, y)
x = point2[0] + length * math.cos(angle + math.pi / 4)
y = point2[1] + length * math.sin(angle + math.pi / 4)
vertex4 = (x, y)
# 创建一个新的Turtle对象
t = turtle.Turtle()
# 移动到第一个顶点
t.penup()
t.goto(vertex1)
t.pendown()
# 循环绘制正方形的四条边
t.forward(length)
t.right(90)
t.forward(length)
t.right(90)
t.forward(length)
t.right(90)
t.forward(length)
# 关闭Turtle窗口
turtle.done()
```
运行这段代码将会在Turtle窗口中绘制一个以`point1`和`point2`为同边,边长为`length`的正方形。
阅读全文