信赖域方法求解最优化问题代码MATLAB
时间: 2024-05-01 12:22:22 浏览: 241
信赖域方法是一类求解无约束最优化问题的优化算法。下面是一个MATLAB代码示例,用于实现信赖域方法:
```matlab
function [x, fval, exitflag] = trustregion(fun, x0, options)
% TRUSTREGION Trust region method for unconstrained optimization
% [X, FVAL, EXITFLAG] = TRUSTREGION(FUN, X0, OPTIONS) finds the minimum
% point X of the function FUN starting from the point X0 using trust
% region method. FUN is a function handle to the objective function that
% accepts a vector input X and returns a scalar objective function value
% F. X0 is the initial point and OPTIONS is a structure created using the
% OPTIMSET function. The field names in the OPTIONS structure correspond
% to parameter names for the TRUSTREGION function. Default values for
% parameters not specified in OPTIONS are:
% OPTIONS.tol = 1e-6;
% OPTIONS.maxIter = 1000;
% OPTIONS.maxFunEvals = Inf;
% OPTIONS.radius = 1;
% OPTIONS.eta = 0.1;
% OPTIONS.verbose = false;
%
% X is the solution found by TRUSTREGION, FVAL is the objective function
% value at X, and EXITFLAG is an integer identifying the reason for
% termination:
% 1 - Function converged to a solution X satisfying the tolerance
% criterion.
% 0 - Maximum number of iterations or function evaluations reached.
%
% Example:
% fun = @(x) (x(1)-1)^2 + (x(2)-2.5)^2;
% x0 = [0 0];
% options = optimset('tol', 1e-8, 'maxIter', 500);
% [x, fval, exitflag] = trustregion(fun, x0, options);
%
% References:
% [1] Nocedal, J., & Wright, S. J. (2006). Numerical optimization
% (2nd ed.). Springer.
% Set default options if not specified by user
defaultOptions.tol = 1e-6;
defaultOptions.maxIter = 1000;
defaultOptions.maxFunEvals = Inf;
defaultOptions.radius = 1;
defaultOptions.eta = 0.1;
defaultOptions.verbose = false;
if nargin < 3
options = defaultOptions;
else
% Fill in missing values of options with defaults
optionNames = fieldnames(defaultOptions);
for i = 1:length(optionNames)
if ~isfield(options, optionNames{i})
options.(optionNames{i}) = defaultOptions.(optionNames{i});
end
end
end
% Initialize variables
x = x0;
fval = fun(x);
grad = gradient(fun, x);
Hess = hessian(fun, x);
iter = 0;
funEvals = 1;
% Main loop
while true
% Compute the Cauchy point
[pk, mk] = cauchy(fun, x, grad, Hess, options.radius);
% Compute the actual reduction
actualReduction = fval - fun(x + pk);
% Compute the predicted reduction
predictedReduction = -mk + fun(x);
% Compute the ratio of actual to predicted reduction
rho = actualReduction / predictedReduction;
% Update the trust region radius
if rho < 0.25
options.radius = options.radius / 4;
elseif rho > 0.75 && abs(norm(pk) - options.radius) < options.tol
options.radius = min(2 * options.radius, options.maxRadius);
end
% Update x and fval if the predicted reduction is good
if rho > options.eta
x = x + pk;
fval = fun(x);
grad = gradient(fun, x);
Hess = hessian(fun, x);
funEvals = funEvals + 1;
end
% Check termination criteria
iter = iter + 1;
if norm(grad) < options.tol || iter >= options.maxIter || ...
funEvals >= options.maxFunEvals
break;
end
% Output iteration information if verbose option is true
if options.verbose
fprintf('Iteration %d: fval = %g, radius = %g, norm(grad) = %g\n', ...
iter, fval, options.radius, norm(grad));
end
end
% Set exit flag based on termination reason
if norm(grad) < options.tol
exitflag = 1;
else
exitflag = 0;
end
end
function [pk, mk] = cauchy(fun, x, grad, Hess, radius)
% Compute the Cauchy point for trust region method
g = grad(:);
H = Hess(:);
alpha = norm(g)^3 / (radius * g' * H * g);
pk = -alpha * min(radius, norm(g)) * g;
mk = fun(x) + g' * pk + 0.5 * pk' * Hess * pk;
end
function grad = gradient(fun, x)
% Compute the gradient of the objective function using central difference
n = length(x);
grad = zeros(n, 1);
h = 1e-6;
for i = 1:n
xplus = x;
xplus(i) = x(i) + h;
xminus = x;
xminus(i) = x(i) - h;
grad(i) = (fun(xplus) - fun(xminus)) / (2 * h);
end
end
function Hess = hessian(fun, x)
% Compute the Hessian of the objective function using central difference
n = length(x);
Hess = zeros(n, n);
h = 1e-6;
for i = 1:n
xplus = x;
xplus(i) = x(i) + h;
xminus = x;
xminus(i) = x(i) - h;
gradplus = gradient(fun, xplus);
gradminus = gradient(fun, xminus);
Hess(:, i) = (gradplus - gradminus) / (2 * h);
end
end
```
上述代码实现了信赖域方法的主循环,以及计算梯度、海森矩阵和 Cauchy 点的函数。要使用此代码,您需要提供一个函数句柄 `fun`,该函数计算目标函数值,一个初始点 `x0`,以及一个选项结构 `options`,该结构包含有关算法的各种参数设置。请注意,此代码使用中心差分来估计梯度和海森矩阵,因此可能不适用于计算资源受限的问题。
阅读全文