for i in np.arange(len(radar_lines)): radar_line=radar_lines[i] pcd_line=pcd_lines[i] pcd_obj = Object3d(pcd_line) center = np.array(pcd_obj.t) center[2] = center[2]+pcd_obj.h # ry=obj.ry heading_angle = -pcd_obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (pcd_obj.l, pcd_obj.w, pcd_obj.h) # all vertical range = (pcd_obj.l, pcd_obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) cropped_cloud = pcd.crop(bbx) # if set colors # colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([cropped_cloud, bbx]) print(pcd_obj.h) radar_obj = Object2d(radar_line) center = [radar_obj.box2d[0], radar_obj.box2d[1]] w = radar_obj.box2d[2] h = radar_obj.box2d[3] angle = radar_obj.angle # rect = cv2.minAreaRect(cnt) box = cv2.boxPoints((center, (w, h), angle)) print(box) box = np.int0(box) cv2.drawContours(im, [box], 0, (0, 0, 255), 2) mask = np.zeros_like(im) # 使用旋转框的角点绘制多边形掩膜 cv2.drawContours(mask, [box], 0, (255, 255, 255), -1) # 使用掩膜提取旋转框内的像素 masked_image = cv2.bitwise_and(im, mask) cv2.imshow("2d bbx", masked_image) cv2.waitKey(0) cv2.destroyAllWindows()怎么继续执行下一个图像
时间: 2023-12-09 10:06:11 浏览: 157
可以将该段代码放在一个循环中,每次读取一个新的图像进行处理,例如:
```
import os
# 遍历文件夹中的所有图像
image_folder = "/path/to/image/folder"
for filename in os.listdir(image_folder):
if filename.endswith(".jpg") or filename.endswith(".png"):
# 读取图像
im = cv2.imread(os.path.join(image_folder, filename))
# 在此处插入上述代码段
```
这样就可以依次处理每个图像并显示结果,等待用户按下任意键后继续处理下一个图像。如果要自动化处理所有图像并保存结果,可以在循环中添加保存图像的代码。
相关问题
for i in np.arange(len(radar_lines)): radar_line=radar_lines[i] pcd_line=pcd_lines[i] pcd_obj = Object3d(pcd_line) center = np.array(pcd_obj.t) center[2] = center[2]+pcd_obj.h # ry=obj.ry heading_angle = -pcd_obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (pcd_obj.l, pcd_obj.w, pcd_obj.h) # all vertical range = (pcd_obj.l, pcd_obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) cropped_cloud = pcd.crop(bbx) # if set colors # colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([cropped_cloud, bbx]) print(pcd_obj.h) radar_obj = Object2d(radar_line) center = [radar_obj.box2d[0], radar_obj.box2d[1]] w = radar_obj.box2d[2] h = radar_obj.box2d[3] angle = radar_obj.angle # rect = cv2.minAreaRect(cnt) box = cv2.boxPoints((center, (w, h), angle)) print(box) box = np.int0(box) cv2.drawContours(im, [box], 0, (0, 0, 255), 2) mask = np.zeros_like(im) # 使用旋转框的角点绘制多边形掩膜 cv2.drawContours(mask, [box], 0, (255, 255, 255), -1) # 使用掩膜提取旋转框内的像素 masked_image = cv2.bitwise_and(im, mask) cv2.imshow("2d bbx", masked_image) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码是用Python编写的,主要是处理雷达和点云数据、绘制3D边界框和2D包围框以及提取像素等操作。具体来说,它的主要流程如下:
1. 遍历每个雷达线和点云线,分别获取对象中心、朝向角度和边界框大小等信息。
2. 根据对象的朝向角度旋转点云,截取点云中对应边界框范围内的点云数据。
3. 绘制3D边界框,并显示出来。
4. 获取雷达数据中的2D边界框信息,并绘制2D包围框。
5. 利用掩膜提取2D包围框内的像素,并显示出来。
这段代码可能是在处理自动驾驶中使用到的,可以帮助自动驾驶车辆检测周围环境,做出合适的行驶决策。
import open3d as o3d import numpy as np pcd = o3d.io.read_point_cloud("data.pcd") points = np.asarray(pcd.points) bbox = pcd.get_axis_aligned_bounding_box() bbox_points = np.asarray(bbox.get_box_points()) vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(pcd) bbox_lines = [[0,1],[1,2],[2,3],[3,0], [4,5],[5,6],[6,7],[7,4], [0,4],[1,5],[2,6],[3,7]] bbox_colors = [[1,0,0] for i in range(len(bbox_lines))] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(bbox_points), lines=o3d.utility.Vector2iVector(bbox_lines), ) line_set.colors = o3d.utility.Vector3dVector(bbox_colors) vis.add_geometry(line_set) labels = np.zeros(points.shape[0]) eps = 0.1 min_points = 10 for i in range(points.shape[0]): if labels[i] != 0: continue neighbors = np.where(np.sum((points - points[i])2, axis=1) < eps2)[0] if neighbors.shape[0] < min_points: labels[i] = -1 else: labels[neighbors] = i+1 cluster_colors = [[np.random.uniform(0, 1), np.random.uniform(0, 1), np.random.uniform(0, 1)] for i in range(np.max(labels))] for i in range(np.max(labels)): if i == -1: continue cluster_points = points[labels==i,:] cluster_pcd = o3d.geometry.PointCloud() cluster_pcd.points = o3d.utility.Vector3dVector(cluster_points) cluster_pcd.paint_uniform_color(cluster_colors[i]) vis.add_geometry(cluster_pcd) vis.run() vis.destroy_window() open3d未响应
这段代码使用了Open3D库进行点云可视化和聚类分析,但是你运行时遇到了未响应的问题。可能是因为点云数据量过大,或者你的电脑性能不足以处理这段代码。你可以尝试使用更小的数据集进行测试,或者提高电脑的性能。同时,你可以尝试在运行代码时打开任务管理器,查看CPU、内存和GPU的使用情况,判断是否存在资源瓶颈。
阅读全文