STM32F103C8T6最小系统能不能驱动两个MG996R
时间: 2023-09-30 18:03:50 浏览: 122
MG996R是一种标准的舵机,其驱动电压为4.8-7.2V,工作电流在不同负载下不同,最大可达2.5A。而STM32F103C8T6是一款低功耗、高性能的微控制器,其IO口输出电流一般在20mA以内,无法直接驱动MG996R。
为了驱动MG996R,需要在STM32F103C8T6的IO口和MG996R之间加上一个驱动器,例如L298N、L9110S等模块,这些模块可以通过PWM信号调节电机的转速和方向。同时需要注意的是,由于MG996R的工作电流较大,为了保证系统的稳定性,还需要为电机提供足够的电源功率和稳定的电源电压。
因此,如果要驱动两个MG996R,建议使用一个较大功率的电源,并选择合适的驱动器模块对MG996R进行驱动。
相关问题
使用stm32f103c8t6和ZE08甲醛传感器建立联系,同时使用SPI通信的OLED模块显示甲醛浓度,传感器接PB10和11,OLED接PA5和7传输数据,程序设计
以下是使用stm32f103c8t6和ZE08甲醛传感器建立联系,同时使用SPI通信的OLED模块显示甲醛浓度的程序设计:
```c
#include "stm32f10x.h"
#define OLED_DC_Pin GPIO_Pin_5
#define OLED_DC_Port GPIOA
#define OLED_CS_Pin GPIO_Pin_7
#define OLED_CS_Port GPIOA
void OLED_GPIO_init(void);
void OLED_write_cmd(unsigned char command);
void OLED_write_data(unsigned char data);
void OLED_init(void);
void OLED_show_str(unsigned char x, unsigned char y, unsigned char *str);
void SPI1_init(void);
void SPI1_send_byte(unsigned char byte);
unsigned char SPI1_receive_byte(void);
void USART2_init(void);
void USART2_send_byte(unsigned char byte);
void delay_ms(unsigned int ms);
int main(void)
{
unsigned char buf[10];
float concentration;
unsigned char str[10];
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);
OLED_GPIO_init();
OLED_init();
SPI1_init();
USART2_init();
while(1)
{
GPIO_ResetBits(GPIOB, GPIO_Pin_10);
delay_ms(1000);
SPI1_send_byte(0xFF);
buf[0] = SPI1_receive_byte();
buf[1] = SPI1_receive_byte();
buf[2] = SPI1_receive_byte();
buf[3] = SPI1_receive_byte();
GPIO_SetBits(GPIOB, GPIO_Pin_10);
concentration = ((buf[0] * 256) + buf[1]) / 1000.0;
sprintf((char *)str, "%.2f mg/m3", concentration);
OLED_show_str(0, 1, str);
USART2_send_byte(buf[0]);
USART2_send_byte(buf[1]);
USART2_send_byte(buf[2]);
USART2_send_byte(buf[3]);
USART2_send_byte('\n');
delay_ms(5000);
}
}
void OLED_GPIO_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = OLED_DC_Pin | OLED_CS_Pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void OLED_write_cmd(unsigned char command)
{
GPIO_ResetBits(OLED_DC_Port, OLED_DC_Pin);
GPIO_ResetBits(OLED_CS_Port, OLED_CS_Pin);
SPI1_send_byte(command);
GPIO_SetBits(OLED_CS_Port, OLED_CS_Pin);
}
void OLED_write_data(unsigned char data)
{
GPIO_SetBits(OLED_DC_Port, OLED_DC_Pin);
GPIO_ResetBits(OLED_CS_Port, OLED_CS_Pin);
SPI1_send_byte(data);
GPIO_SetBits(OLED_CS_Port, OLED_CS_Pin);
}
void OLED_init(void)
{
OLED_write_cmd(0xAE); // display off
OLED_write_cmd(0x20); // addressing mode
OLED_write_cmd(0x10); // horizontal addressing mode
OLED_write_cmd(0xb0); // set page start address
OLED_write_cmd(0xc8); // set COM output scan direction
OLED_write_cmd(0x00); // set low column address
OLED_write_cmd(0x10); // set high column address
OLED_write_cmd(0x40); // set start line address
OLED_write_cmd(0x81); // set contrast control register
OLED_write_cmd(0xff); // set contrast to maximum
OLED_write_cmd(0xa1); // set segment re-map 95 to 0
OLED_write_cmd(0xa6); // set normal display
OLED_write_cmd(0xa8); // set multiplex ratio
OLED_write_cmd(0x3f); // 1/64 duty
OLED_write_cmd(0xa4); // display all on/resume to display
OLED_write_cmd(0xd3); // set display offset
OLED_write_cmd(0x00); // not offset
OLED_write_cmd(0xd5); // set display clock divide ratio/oscillator frequency
OLED_write_cmd(0xf0); // set divide ratio
OLED_write_cmd(0xd9); // set pre-charge period
OLED_write_cmd(0x22); // set pre-charge period
OLED_write_cmd(0xda); // set COM pins hardware configuration
OLED_write_cmd(0x12);
OLED_write_cmd(0xdb); // set vcomh
OLED_write_cmd(0x20); // 0.77xVcc
OLED_write_cmd(0x8d); // set charge pump enable/disable
OLED_write_cmd(0x14); // enable charge pump
OLED_write_cmd(0xaf); // turn on oled panel
}
void OLED_show_str(unsigned char x, unsigned char y, unsigned char *str)
{
unsigned char i, j;
for(i = 0; str[i] != '\0'; i++)
{
for(j = 0; j < 6; j++)
{
OLED_write_data(F6x8[(str[i] - 32) * 6 + j]);
}
}
}
void SPI1_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_Init(SPI1, &SPI_InitStructure);
SPI_Cmd(SPI1, ENABLE);
}
void SPI1_send_byte(unsigned char byte)
{
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, byte);
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
SPI_I2S_ReceiveData(SPI1);
}
unsigned char SPI1_receive_byte(void)
{
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
SPI_I2S_SendData(SPI1, 0xFF);
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
return SPI_I2S_ReceiveData(SPI1);
}
void USART2_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_Cmd(USART2, ENABLE);
}
void USART2_send_byte(unsigned char byte)
{
while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);
USART_SendData(USART2, byte);
}
void delay_ms(unsigned int ms)
{
unsigned int i, j;
for(i = 0; i < ms; i++)
{
for(j = 0; j < 1000; j++);
}
}
```
注意事项:
1. 在使用 SPI 通信时,需要先拉低从机的片选引脚(本例中为 PB10),并在传输完数据后再拉高。
2. OLED 模块使用的是 I2C 通信,本例中未使用 I2C,而是采用了自己定义的一组字符库(F6x8),因此 OLED 模块只能显示英文字母和数字,并且是单色的。如果需要显示中文或多种颜色,需要使用 I2C 通信,并且设置不同的字符库和颜色值。
写stm32f103c8t6驱动adxl335 的代码
好的,下面是一个简单的示例代码,可以驱动ADXL335三轴加速度传感器,并读取其数据。
```c
#include "stm32f10x.h"
#define ADXL335_CS_PIN GPIO_Pin_0
#define ADXL335_CS_GPIO GPIOA
void ADXL335_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
// 使能 SPI 时钟和 GPIO 时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1 | RCC_APB2Periph_GPIOA, ENABLE);
// 配置 SPI1_SCK 和 SPI1_MOSI 引脚为推挽输出
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置 SPI1_MISO 引脚为浮空输入
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 配置 ADXL335_CS 引脚为推挽输出
GPIO_InitStructure.GPIO_Pin = ADXL335_CS_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(ADXL335_CS_GPIO, &GPIO_InitStructure);
// 配置 SPI1
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_Init(SPI1, &SPI_InitStructure);
// 使能 SPI1
SPI_Cmd(SPI1, ENABLE);
// 禁用 ADXL335
GPIO_SetBits(ADXL335_CS_GPIO, ADXL335_CS_PIN);
}
void ADXL335_Read(int16_t *x, int16_t *y, int16_t *z)
{
uint8_t txbuf[7] = {0};
uint8_t rxbuf[7] = {0};
int16_t raw_x, raw_y, raw_z;
// 使能 ADXL335
GPIO_ResetBits(ADXL335_CS_GPIO, ADXL335_CS_PIN);
// 发送读取数据的命令和地址
txbuf[0] = 0x80 | 0x32; // 0x80 表示读取,0x32 是 X 轴数据地址
SPI_I2S_SendData(SPI1, txbuf[0]);
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
rxbuf[0] = SPI_I2S_ReceiveData(SPI1);
// 接收 6 个数据字节
for (int i = 0; i < 6; i++) {
SPI_I2S_SendData(SPI1, 0x00);
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
rxbuf[i+1] = SPI_I2S_ReceiveData(SPI1);
}
// 计算三轴加速度值
raw_x = ((int16_t)rxbuf[2] << 8) | rxbuf[1];
raw_y = ((int16_t)rxbuf[4] << 8) | rxbuf[3];
raw_z = ((int16_t)rxbuf[6] << 8) | rxbuf[5];
*x = raw_x * 3.3 / 1023 * 1000 / 300; // 将值转换为 mG(1 g = 9.8 m/s^2,ADXL335 灵敏度为 300 mV/g)
*y = raw_y * 3.3 / 1023 * 1000 / 300;
*z = raw_z * 3.3 / 1023 * 1000 / 300;
// 禁用 ADXL335
GPIO_SetBits(ADXL335_CS_GPIO, ADXL335_CS_PIN);
}
```
在这个代码中,我们使用了 SPI1 来与 ADXL335 进行通信,并且使用了 PA0 作为 ADXL335 的片选引脚。具体的使用方法可以参考代码中的注释。
阅读全文