使用Matlab工具,实现曼哈顿距离、欧几里得距离、闵可夫斯基距离、切比雪夫距离和余弦夹角
时间: 2024-10-29 14:24:20 浏览: 70
距离计算方法总结.pdf
在MATLAB中,可以使用内置函数以及自定义函数来计算各种常见的距离度量。以下是关于五种距离度量的简要说明:
1. **曼哈顿距离** (也称为城市街区距离):对于两个点(x1, y1)和(x2, y2),曼哈顿距离等于绝对坐标差的和,即 `abs(x1 - x2) + abs(y1 - y2)`。
2. **欧几里得距离**:这是最常用的直线距离,计算公式为 `sqrt((x2-x1)^2 + (y2-y1)^2)`。MATLAB中有现成的`norm`函数可用于计算这个值,例如 `norm([x1 y1] - [x2 y2], 'euclidean')`。
3. **闵可夫斯基距离**:它是一种泛化的欧氏距离,当p=2时等同于欧氏距离。如果p不等于2,可以用 `norm` 函数,指定第三个参数p,如 `norm([x1 y1] - [x2 y2], p)`。
4. **切比雪夫距离**:它衡量的是两个向量在每个维度上最大偏差,等于各个坐标差的最大值,表达式为 `max(abs(x1 - x2), abs(y1 - y2))`。
5. **余弦夹角**:用于测量两个非零向量之间的角度,计算公式是 `(A'*B)/(|A|*|B|)`,其中A和B是向量,`'*` 表示矩阵乘法,`|.|` 表示向量的模。在MATLAB中,虽然没有直接的函数计算,但可以先计算点积然后除以它们的长度。
如果你需要编写自定义函数,可以参考以下伪代码:
```matlab
function cosine_angle = cosine_similarity(vector_A, vector_B)
dot_product = dot(vector_A, vector_B);
magnitude_A = norm(vector_A);
magnitude_B = norm(vector_B);
cosine_angle = dot_product / (magnitude_A * magnitude_B);
end
```
以上就是如何在MATLAB中实现这几种距离和相似度计算。
阅读全文