货郎问题 回溯法 python
时间: 2023-12-27 16:24:26 浏览: 136
以下是使用回溯算法解决货郎问题的Python示例代码:
```python
import sys
# 计算两个城市之间的距离
def distance(city1, city2):
# 这里假设city1和city2是城市的坐标,可以根据实际情况进行修改
return abs(city1[0] - city2[0]) + abs(city1[1] - city2[1])
# 回溯函数
def tsp_backtracking(cities, current_path, current_cost, best_path, best_cost, visited):
# 如果已经访问了所有城市,且当前路径的总距离更小,则更新最优路径和最优距离
if len(current_path) == len(cities):
if current_cost < best_cost:
best_path[:] = current_path[:]
best_cost[0] = current_cost
return
# 遍历所有未访问的城市
for i in range(len(cities)):
if not visited[i]:
# 更新当前路径和总距离
current_path.append(cities[i])
current_cost += distance(current_path[-2], current_path[-1]) if len(current_path) > 1 else 0
visited[i] = True
# 递归调用回溯函数
tsp_backtracking(cities, current_path, current_cost, best_path, best_cost, visited)
# 回溯,恢复状态
visited[i] = False
current_cost -= distance(current_path[-2], current_path[-1]) if len(current_path) > 1 else 0
current_path.pop()
# 主函数
def tsp(cities):
# 初始化最优路径和最优距离
best_path = []
best_cost = [sys.maxsize]
# 初始化当前路径、当前距离和访问状态
current_path = []
current_cost = 0
visited = [False] * len(cities)
# 从第一个城市开始回溯
current_path.append(cities[0])
visited[0] = True
# 调用回溯函数
tsp_backtracking(cities, current_path, current_cost, best_path, best_cost, visited)
return best_path, best_cost[0]
# 示例用法
cities = [(0, 0), (1, 2), (3, 1), (2, 3), (4, 4)]
best_path, best_cost = tsp(cities)
print("Best path:", best_path)
print("Best cost:", best_cost)
```
这段代码使用回溯算法来解决货郎问题。它通过枚举所有可能的路径,并使用剪枝策略来减少不必要的计算。最终找到最短路径和最短距离。
阅读全文