拟牛顿迭代法matlab程序

时间: 2023-12-15 14:05:24 浏览: 27
以下是拟牛顿迭代法的MATLAB程序: ```matlab function [x, fval, exitflag, output] = fminunc(fun, x0, options, varargin) %FMINUNC Multivariable unconstrained optimization using the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno. % X = FMINUNC(FUN,X0) starts at X0 and attempts to find a local minimizer X of the function FUN. FUN is a function handle. FUN accepts input X and returns a scalar function value F evaluated at X. X0 can be a scalar, vector, or matrix. % % X = FMINUNC(FUN,X0,OPTIONS) minimizes with the default optimization parameters replaced by values in the structure OPTIONS, created with the OPTIMSET function. See OPTIMSET for details. Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, FunValCheck, GradObj, Hessian, HessMult, HessPattern, InitialHessType, InitialHessMatrix, LargeScale, MaxFunEvals, MaxIter, OutputFcn, PlotFcns, ScaleProblem, TypicalX, and UseParallel. % % X = FMINUNC(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structure with the function FUN in PROBLEM.objective, the start point in PROBLEM.x0, the options structure in PROBLEM.options, and solver name 'fminunc' in PROBLEM.solver. The PROBLEM structure must have all the fields. % % [X,FVAL] = FMINUNC(FUN,X0,...) returns FVAL, the value of the objective function FUN at the solution X. % % [X,FVAL,EXITFLAG] = FMINUNC(FUN,X0,...) returns an EXITFLAG that describes the exit condition. Possible values of EXITFLAG and the corresponding exit conditions are % 1 Maximum coordinate difference between current best point and other points in simplex is less than or equal to TolX and corresponding difference in function values is less than or equal to TolFun. % 0 Maximum number of function evaluations or iterations reached. % -1 Optimization terminated by the output function. % -2 No feasible point was found. % -3 Problem is unbounded. % -4 Line search failed. % -5 Trust region radius became too small. % -6 Trust region radius became too large. % -7 Objective function is undefined at initial point. % % [X,FVAL,EXITFLAG,OUTPUT] = FMINUNC(FUN,X0,...) returns a structure OUTPUT with the number of iterations taken in OUTPUT.iterations, the number of function evaluations in OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations, the number of function evaluations (if used) in OUTPUT.firstorderopt, and the exit message in OUTPUT.message. % % Examples % FUN can be specified using @: % X = fminunc(@sin,3) % finds a minimum of the SIN function near 3. % % FUN can be an anonymous function: % X = fminunc(@(x) norm(x),[1;2;3]) % returns a point near the origin. % % FUN can be a parameterized function. Use an anonymous function to capture the problem-dependent parameters: % f = @(x,c) x(1).^2+c*x(2).^2; % The parameterized function. % c = 1.5; % The parameter. % X = fminunc(@(x) f(x,c),[0.3;1]) % % See also OPTIMSET, FMINSEARCH, FUNCTION_HANDLE. % References: % J. Nocedal and S. Wright, "Numerical Optimization", 2nd edition, Springer, 2006, pp. 140-145. % D. F. Shanno and K. J. Phua, "Matrix conditioning and nonlinear optimization", Mathematics of Computation, Vol. 24, 1970, pp. 1095-1102. % R. Fletcher, "A new approach to variable metric algorithms", Computer Journal, Vol. 13, 1970, pp. 317-322. % R. Fletcher, "Practical Methods of Optimization", 2nd edition, Wiley, 1987, pp. 120-122. % J. E. Dennis and D. J. Woods, "New Quasi-Newton Algorithms for the Optimization of Functions with Simple Bounds", SIAM Journal on Numerical Analysis, Vol. 9, 1972, pp. 617-625. % D. Goldfarb, "A family of variable-metric methods derived by variational means", Mathematics of Computation, Vol. 24, 1970, pp. 23-26. % D. Goldfarb and A. Idnani, "A numerically stable dual method for solving strictly convex quadratic programs", Mathematical Programming, Vol. 27, 1983, pp. 1-33. % D. Goldfarb and A. Idnani, "On Steepest Descent for Unconstrained Optimization: A Comparison of Two Modifications", in "Recent Advances in Optimization Techniques", R. Fletcher, Ed., Academic Press, 1969, pp. 19-27. % A. R. Conn, N. I. M. Gould, and Ph. L. Toint, "Trust Region Methods", SIAM, 2000. % J. Nocedal, "Updating Quasi-Newton Matrices with Limited Storage", Mathematics of Computation, Vol. 35, 1980, pp. 773-782. % D. Liu and J. Nocedal, "On the Limited Memory Method for Large Scale Optimization", Mathematical Programming B, Vol. 45, 1989, pp. 503-528. % R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A Limited Memory Algorithm for Bound Constrained Optimization", SIAM Journal on Scientific Computing, Vol. 16, 1995, pp. 1190-1208. % R. H. Byrd, J. Nocedal, and R. B. Schnabel, "Representations of Quasi-Newton Matrices and their use in Limited Memory Methods", Mathematical Programming B, Vol. 63, 1994, pp. 129-156. % J. M. Martinez and A. Martinez, "A new quasi-Newton method for unconstrained optimization", Journal of Computational and Applied Mathematics, Vol. 234, 2010, pp. 883-893. % Copyright 1984-2014 The MathWorks, Inc. defaultopt = struct('Display','notify','GradObj','off','Hessian','off',... 'MaxFunEvals',100*numberOfVariables,'MaxIter',400,'TolFun',1e-6,... 'TolX',1e-6,'DerivativeCheck','off','Diagnostics','off',... 'FunValCheck','off','OutputFcn',[],'PlotFcns',[],'HessMult',[],... 'HessPattern','sparse(ones(numberOfVariables))',... 'InitialHessType','scaled-identity','InitialHessMatrix',[],... 'TypicalX','ones(numberOfVariables,1)','UseParallel',false,... 'ScaleProblem','none'); % If just 'defaults' passed in, return the default options in X if nargin == 1 && nargout <= 1 && strcmpi(fun,'defaults') x = defaultopt; return end if nargin < 2 error(message('optim:fminunc:NotEnoughInputs')); end if ~ischar(fun) && ~isa(fun,'function_handle') error(message('optim:fminunc:InvalidFun')); end if nargin < 3 options = []; end % Detect problem structure input if nargin == 1 && isa(fun,'struct') [fun,x0,options] = separateOptimStruct(fun); end % Check for non-double inputs msg = isoptimargdbl('FMINUNC', {'X0','initial point'}, x0); if ~isempty(msg) error(msg); end % Check that X0 is a real vector or matrix. if ~isreal(x0) || ~isvector(x0) error(message('optim:fminunc:NonRealInitialPoint')); end % Check that X0 is not empty. if isempty(x0) error(message('optim:fminunc:EmptyInitialPoint')); end % Check that OPTIONS is a valid structure if ~isempty(options) && ~isa(options,'struct') error(message('optim:fminunc:InvalidOptions')); end % Get the options [options,optimargs] = optimset(defaultopt,options); % Check if the objective function is a GPU array function [fun,haveOutputFcn] = gpuArrayFunFcnCheck(fun); % Check for non-double inputs msg = isoptimargdbl('FMINUNC', 'objective function', fun); if ~isempty(msg) error(msg); end % Check for non-double inputs in extra arguments if ~isempty(varargin) for i = 1:length(varargin) msg = isoptimargdbl('FMINUNC', ['argument ' num2str(i)], varargin{i}); if ~isempty(msg) error(msg); end end end % Check for non-double inputs in options structure fminuncFields = {'TypicalX'}; for i = 1:length(fminuncFields) if isfield(options,fminuncFields{i}) msg = isoptimargdbl('FMINUNC', fminuncFields{i}, options.(fminuncFields{i})); if ~isempty(msg) error(msg); end end end % Check for non-positive MaxFunEvals or MaxIter if options.MaxFunEvals <= 0 error(message('optim:fminunc:InvalidMaxFunEvals')); end if options.MaxIter <= 0 error(message('optim:fminunc:InvalidMaxIter')); end % Check for invalid values of HessMult if ~isempty(options.HessMult) && ~isa(options.HessMult,'function_handle') error(message('optim:fminunc:InvalidHessMult')); end % Check for invalid values of HessPattern if ~isempty(options.HessPattern) && ~isnumeric(options.HessPattern) error(message('optim:fminunc:InvalidHessPattern')); end % Check for invalid values of InitialHessType if ~isempty(options.InitialHessType) && ... ~(strcmpi(options.InitialHessType,'identity') || ... strcmpi(options.InitialHessType,'scaled-identity') || ... strcmpi(options.InitialHessType,'user-supplied')) error(message('optim:fminunc:InvalidInitialHessType')); end % Check for invalid values of ScaleProblem if ~(strcmpi(options.ScaleProblem,'none') || ... strcmpi(options.ScaleProblem,'jacobian') || ... strcmpi(options.ScaleProblem,'obj-and-jacobian')) error(message('optim:fminunc:InvalidScaleProblem')); end % Check for invalid values of UseParallel if ~(islogical(options.UseParallel) || ... (isnumeric(options.UseParallel) && isscalar(options.UseParallel))) error(message('optim:fminunc:InvalidUseParallel')); end % Check for invalid values of Diagnostics if ~(strcmpi(options.Diagnostics,'off') || ... strcmpi(options.Diagnostics,'on') || ... strcmpi(options.Diagnostics,'iter') || ... strcmpi(options.Diagnostics,'final')) error(message('optim:fminunc:InvalidDiagnostics')); end % Check for invalid values of InitialHessMatrix if ~isempty(options.InitialHessMatrix) && ~isnumeric(options.InitialHessMatrix) error(message('optim:fminunc:InvalidInitialHessMatrix')); end % Check for invalid values of PlotFcns if ~isempty(options.PlotFcns) && ~iscell(options.PlotFcns) error(message('optim:fminunc:InvalidPlotFcns')); end % Check for invalid values of OutputFcn if ~isempty(options.OutputFcn) && ~iscell(options.OutputFcn) error(message('optim:fminunc:InvalidOutputFcn')); end % Check for invalid values of DerivativeCheck if ~(strcmpi(options.DerivativeCheck,'off') || ... strcmpi(options.DerivativeCheck,'on') || ... strcmpi(options.DerivativeCheck,'first-order') || ... strcmpi(options.DerivativeCheck,'second-order')) error(message('optim:fminunc:InvalidDerivativeCheck')); end % Check for invalid values of FunValCheck if ~(strcmpi(options.FunValCheck,'off') || ... strcmpi(options.FunValCheck,'on')) error(message('optim:fminunc:InvalidFunValCheck')); end % Check for invalid values of LargeScale if ~(strcmpi(options.LargeScale,'off') || ... strcmpi(options.LargeScale,'on')) error(message('optim:fminunc:InvalidLargeScale')); end % Check for invalid values of GradObj if ~(strcmpi(options.GradObj,'off') || ... strcmpi(options.GradObj,'on')) error(message('optim:fminunc:InvalidGradObj')); end % Check for invalid values of Hessian if ~(strcmpi(options.Hessian,'off') || ... strcmpi(options.Hessian,'on')) error(message('optim:fminunc:InvalidHessian')); end % Check for invalid values of HessMult if ~isempty(options.HessMult) && ~isa(options.HessMult,'function_handle') error(message('optim:fminunc:InvalidHessMult')); end % Check for invalid values of HessPattern if ~isempty(options.HessPattern) && ~isnumeric(options.HessPattern) error(message('optim:fminunc:InvalidHessPattern')); end % Check for invalid values of InitialHessType if ~isempty(options.InitialHessType) && ... ~(strcmpi(options.InitialHessType,'identity') || ... strcmpi(options.InitialHessType,'scaled-identity') || ... strcmpi(options.InitialHessType,'user-supplied')) error(message('optim:fminunc:InvalidInitialHessType')); end % Check for invalid values of ScaleProblem if ~(strcmpi(options.ScaleProblem,'none') || ... strcmpi(options.ScaleProblem,'jacobian') || ... strcmpi(options.ScaleProblem,

相关推荐

最新推荐

recommend-type

牛顿迭代法的MATLAB程序.pdf

牛顿-拉夫逊法潮流计算 一、 基本原理 设有单变量非线性方程 f ( x) 0 (11 29) 求解此方程时,先给出解的近似值 (0) x ,它与真解的误差为 (0) x ,则满足方程 (11-29),即 (0) (0) f ( x x ) 0 将上式左边的函数...
recommend-type

牛顿迭代法matlab程序

几道例题,用牛顿迭代法解的三道关于非线性方程组的题目,文件中有matlab代码,仅供参考
recommend-type

牛顿迭代法解多元非线性方程程序与说明.docx

利用牛顿迭代法求解多元非线性方程组,包含MATLAB程序源码和运行结果。
recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。