用C++设计并实现算法,找到图G的最小色数k,并对图中的顶点进行着色,确保相邻顶点使用不同颜色,输出最小着色数k及各顶点的着色。
时间: 2024-11-09 10:26:31 浏览: 11
西南交大离散数学第四次编程作业基于实现韦尔奇·鲍威尔法对图进行着色
在C++中,你可以使用经典的深度优先搜索(DFS)结合贪心策略来解决找图G的最小色数K的问题。这里是一个简单的算法描述:
1. **图表示**:
- 可以使用邻接矩阵或邻接表来存储图。邻接矩阵适合稠密图,邻接列表则更适合稀疏图。
2. **Breadth First Search (BFS)**:
- 首先,遍历图并标记所有顶点的颜色为0(初始颜色)。这将作为基础层。
- 对于每个新访问到的顶点,如果它的邻居已经用过一种颜色,则尝试下一个未使用的颜色;否则就继续分配新的颜色。
3. **Coloring Function**:
- 使用递归或迭代的方式,对于每个节点,检查其相邻节点是否已经有相同的颜色。如果没有,给当前节点分配一个未使用的颜色;如果有,增加颜色计数并尝试下一个颜色。
4. **检测是否完成**:
- 当所有顶点都被着色,并且没有两个相邻顶点同色时,说明找到了最小颜色数K。
5. **输出结果**:
- 最后,输出最小颜色数K以及每个顶点的着色信息。
以下是伪代码示例:
```cpp
#include <vector>
using namespace std;
int min_color = 0;
vector<int> color_nodes(graph.size(), 0);
void dfs(int node, vector<vector<int>>& adj_list, vector<int>& visited) {
visited[node] = true;
for (int neighbor : adj_list[node]) {
if (!visited[neighbor] && color_nodes[neighbor] == color_nodes[node]) {
min_color++;
color_nodes[node]++;
}
}
// 更新节点颜色,使其与最近的已着色邻居不同
while (color_nodes[node] == min_color) {
color_nodes[node]++;
}
}
int find_min_color(vector<vector<int>>& adj_list) {
int nodes_count = adj_list.size();
queue<int> q;
q.push(0);
vector<bool> visited(nodes_count, false);
color_nodes[0] = 1; // 标记起点颜色
while (!q.empty()) {
int node = q.front();
q.pop();
dfs(node, adj_list, visited);
}
return min_color;
}
// 示例用法:
vector<vector<int>> graph = ...; // 输入的邻接列表表示
int k = find_min_color(graph);
cout << "最小颜色数k: " << k << endl;
for (int i = 0; i < graph.size(); i++) {
cout << "顶点" << i << "的着色: " << color_nodes[i] << endl;
}
```
阅读全文