胶囊网络的AgreementRouting类函数的forward函数部分中batch_size, input_caps, output_caps, = u_predict.size()运行报错RuntimeError: The size of tensor a (19) must match the size of tensor b (1728) at non-singleton dimension 1该怎么改

时间: 2023-08-14 07:55:48 浏览: 89
你遇到的错误是由于张量的尺寸不匹配所导致的。根据错误信息,输入张量的大小为(19),而输出张量的大小应该是(1728)。要解决这个问题,你需要确保输入和输出张量的大小在非单例维度上匹配。 首先,你可以检查一下输入张量u_predict的尺寸,确保它的形状是(batch_size, input_caps, output_caps)。如果u_predict的尺寸不正确,你可以调整它的形状以匹配预期的尺寸。 例如,如果u_predict的形状是(19, 32, 64),你可以使用torch.reshape函数将其调整为(19, 1728),代码如下: ```python u_predict = torch.reshape(u_predict, (batch_size, -1)) ``` 这将把input_caps和output_caps两个维度合并为一个维度。 另外,你还需要确保AgreementRouting类的forward函数接收到正确的输入。在调用forward函数之前,你需要检查一下输入张量的尺寸是否正确,并将其调整为(batch_size, input_caps, output_caps)。 如果你提供更多关于AgreementRouting类和相关代码的细节,我可以给出更具体的建议。
相关问题

class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(self.hidden_size, self.output_size) def forward(self, input_seq): batch_size, seq_len = input_seq[0], input_seq[1] h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) # output(batch_size, seq_len, num_directions * hidden_size) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output) pred = pred[:, -1, :] return pred这些代码分别是什么意思

这些代码是一个 PyTorch 模型的实现,该模型是一个基于 LSTM 的序列预测模型。具体解释如下: - `class LSTM(nn.Module):` 定义了一个 LSTM 模型类,继承自 PyTorch 的 nn.Module 类。 - `def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):` 定义了模型的构造函数,接收五个参数:输入特征维度 `input_size`、隐藏层特征维度 `hidden_size`、LSTM 层数 `num_layers`、输出特征维度 `output_size`、batch 大小 `batch_size`。 - `super().__init__():` 调用父类的构造函数,初始化模型的基本属性。 - `self.input_size = input_size`、`self.hidden_size = hidden_size`、`self.num_layers = num_layers`、`self.output_size = output_size`、`self.batch_size = batch_size` 分别初始化模型的输入特征维度、隐藏层特征维度、LSTM 层数、输出特征维度和 batch 大小等属性。 - `self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)` 定义了一个 LSTM 层,接收四个参数:输入特征维度,隐藏层特征维度,LSTM 层数和 batch_first 的值为 True,表示输入数据的维度顺序为 (batch_size, seq_len, input_size)。 - `self.linear = nn.Linear(self.hidden_size, self.output_size)` 定义了一个全连接层,用于将 LSTM 层的输出特征映射到指定的输出维度。 - `def forward(self, input_seq):` 定义了模型的前向传播函数,接收一个参数 `input_seq`,表示输入的序列数据。 - `batch_size, seq_len = input_seq[0], input_seq[1]` 解析输入数据的 batch 大小和序列长度。 - `h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 和 `c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 初始化 LSTM 层的初始隐藏状态和细胞状态,使用随机生成的张量,并将它们移动到指定的设备上。 - `output, _ = self.lstm(input_seq, (h_0, c_0))` 将输入序列和初始状态输入到 LSTM 层中,得到 LSTM 层的输出和最后一个时间步的隐藏状态。 - `pred = self.linear(output)` 将 LSTM 层的输出特征映射到指定的输出维度。 - `pred = pred[:, -1, :]` 取最后一个时间步的输出特征作为预测结果。 总的来说,这段代码实现了一个基于 LSTM 的序列预测模型,可以用于对时序数据进行预测。

class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, batch_size, device="cpu"): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=False) def forward(self, input_seq): batch_size, seq_len = input_seq.shape[0], input_seq.shape[1] h_0 = torch.randn(self.num_layers, batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_layers, batch_size, self.hidden_size).to(self.device) output, (h, c) = self.lstm(input_seq, (h_0, c_0)) return output, h

这段代码定义了一个名为 `LSTM` 的类,继承了 `nn.Module` 类,并实现了 `forward()` 方法。在 `forward()` 方法中,输入数据 `input_seq` 被传入 LSTM 模型中进行处理。该方法返回两个值: - `output`:LSTM 模型在处理输入数据后的输出,包括每个时间步的输出。 - `h`:LSTM 模型最后一个时间步的隐状态,作为后续模型处理的初始状态。 在 `__init__()` 方法中,类的实例变量被初始化,包括: - `device`:该变量指定了设备类型,默认为 "cpu"。 - `input_size`:该变量指定了输入数据的特征维度。 - `hidden_size`:该变量指定了 LSTM 模型中隐藏层的维度。 - `num_layers`:该变量指定了 LSTM 模型的层数。 - `batch_size`:该变量指定了输入数据的批次大小。 然后,通过 `nn.LSTM` 类创建了一个名为 `lstm` 的 LSTM 模型,该模型的输入特征维度为 `input_size`,隐藏层维度为 `hidden_size`,层数为 `num_layers`,并且设置了 `batch_first=True` 表示输入数据的第一维为批次大小,`bidirectional=False` 表示不使用双向 LSTM。 这个 `LSTM` 类的实例可以用于处理序列数据,并通过前向传播方法 `forward()` 对数据进行处理,返回处理后的输出 `output` 和最后一个时间步的隐状态 `h`。
阅读全文

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

最新推荐

recommend-type

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx

国民经济行业分类与国际标准行业分类(ISIC+Rev.4)的对照和匹配(供参考).docx
recommend-type

网络助手工具(亲测好用)

网络助手工具(亲测好用)
recommend-type

013基于混合整数规划的电池容量优化 不能运行.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

HTML5实现的微信大转盘抽奖特效源码.zip

这是一款基于jQuery+HTML5实现的微信大转盘抽奖效果源码,是一款可配置奖品抽奖的jQuery大转盘抽奖代码,可实现点击按钮转轮旋转实现抽奖功能,效果逼真自然,是一款非常优秀的特效源码
recommend-type

自动驾驶控制-基于MPC的速度控制仿真 matlab和simulink联合仿真,基于mpc算法的速度控制,跟踪阶跃形式的速度和正弦形式的速度

自动驾驶控制-基于MPC的速度控制仿真 matlab和simulink联合仿真,基于mpc算法的速度控制,跟踪阶跃形式的速度和正弦形式的速度。
recommend-type

macOS 10.9至10.13版高通RTL88xx USB驱动下载

资源摘要信息:"USB_RTL88xx_macOS_10.9_10.13_driver.zip是一个为macOS系统版本10.9至10.13提供的高通USB设备驱动压缩包。这个驱动文件是针对特定的高通RTL88xx系列USB无线网卡和相关设备的,使其能够在苹果的macOS操作系统上正常工作。通过这个驱动,用户可以充分利用他们的RTL88xx系列设备,包括但不限于USB无线网卡、USB蓝牙设备等,从而实现在macOS系统上的无线网络连接、数据传输和其他相关功能。 高通RTL88xx系列是广泛应用于个人电脑、笔记本、平板和手机等设备的无线通信组件,支持IEEE 802.11 a/b/g/n/ac等多种无线网络标准,为用户提供了高速稳定的无线网络连接。然而,为了在不同的操作系统上发挥其性能,通常需要安装相应的驱动程序。特别是在macOS系统上,由于操作系统的特殊性,不同版本的系统对硬件的支持和驱动的兼容性都有不同的要求。 这个压缩包中的驱动文件是特别为macOS 10.9至10.13版本设计的。这意味着如果你正在使用的macOS版本在这个范围内,你可以下载并解压这个压缩包,然后按照说明安装驱动程序。安装过程通常涉及运行一个安装脚本或应用程序,或者可能需要手动复制特定文件到系统目录中。 请注意,在安装任何第三方驱动程序之前,应确保从可信赖的来源获取。安装非官方或未经认证的驱动程序可能会导致系统不稳定、安全风险,甚至可能违反操作系统的使用条款。此外,在安装前还应该查看是否有适用于你设备的更新驱动版本,并考虑备份系统或创建恢复点,以防安装过程中出现问题。 在标签"凄 凄 切 切 群"中,由于它们似乎是无意义的汉字组合,并没有提供有关该驱动程序的具体信息。如果这是一组随机的汉字,那可能是压缩包文件名的一部分,或者可能是文件在上传或处理过程中产生的错误。因此,这些标签本身并不提供与驱动程序相关的任何技术性知识点。 总结来说,USB_RTL88xx_macOS_10.9_10.13_driver.zip包含了用于特定高通RTL88xx系列USB设备的驱动,适用于macOS 10.9至10.13版本的操作系统。在安装驱动之前,应确保来源的可靠性,并做好必要的系统备份,以防止潜在的系统问题。"
recommend-type

PyCharm开发者必备:提升效率的Python环境管理秘籍

# 摘要 本文系统地介绍了PyCharm集成开发环境的搭建、配置及高级使用技巧,重点探讨了如何通过PyCharm进行高效的项目管理和团队协作。文章详细阐述了PyCharm项目结构的优化方法,包括虚拟环境的有效利用和项目依赖的管理。同时,本文也深入分析了版本控制的集成流程,如Git和GitHub的集成,分支管理和代码合并策略。为了提高代码质量,本文提供了配置和使用linters以及代码风格和格式化工具的指导。此外,本文还探讨了PyCharm的调试与性能分析工具,插件生态系统,以及定制化开发环境的技巧。在团队协作方面,本文讲述了如何在PyCharm中实现持续集成和部署(CI/CD)、代码审查,以及
recommend-type

matlab中VBA指令集

MATLAB是一种强大的数值计算和图形处理软件,主要用于科学计算、工程分析和技术应用。虽然它本身并不是基于Visual Basic (VB)的,但在MATLAB环境中可以利用一种称为“工具箱”(Toolbox)的功能,其中包括了名为“Visual Basic for Applications”(VBA)的接口,允许用户通过编写VB代码扩展MATLAB的功能。 MATLAB的VBA指令集实际上主要是用于操作MATLAB的工作空间(Workspace)、图形界面(GUIs)以及调用MATLAB函数。VBA代码可以在MATLAB环境下运行,执行的任务可能包括但不限于: 1. 创建和修改变量、矩阵
recommend-type

在Windows Forms和WPF中实现FontAwesome-4.7.0图形

资源摘要信息: "将FontAwesome470应用于Windows Forms和WPF" 知识点: 1. FontAwesome简介: FontAwesome是一个广泛使用的图标字体库,它提供了一套可定制的图标集合,这些图标可以用于Web、桌面和移动应用的界面设计。FontAwesome 4.7.0是该库的一个版本,它包含了大量常用的图标,用户可以通过简单的CSS类名引用这些图标,而无需下载单独的图标文件。 2. .NET开发中的图形处理: 在.NET开发中,图形处理是一个重要的方面,它涉及到创建、修改、显示和保存图像。Windows Forms和WPF(Windows Presentation Foundation)是两种常见的用于构建.NET桌面应用程序的用户界面框架。Windows Forms相对较为传统,而WPF提供了更为现代和丰富的用户界面设计能力。 3. 将FontAwesome集成到Windows Forms中: 要在Windows Forms应用程序中使用FontAwesome图标,首先需要将FontAwesome字体文件(通常是.ttf或.otf格式)添加到项目资源中。然后,可以通过设置控件的字体属性来使用FontAwesome图标,例如,将按钮的字体设置为FontAwesome,并通过设置其Text属性为相应的FontAwesome类名(如"fa fa-home")来显示图标。 4. 将FontAwesome集成到WPF中: 在WPF中集成FontAwesome稍微复杂一些,因为WPF对字体文件的支持有所不同。首先需要在项目中添加FontAwesome字体文件,然后通过XAML中的FontFamily属性引用它。WPF提供了一个名为"DrawingImage"的类,可以将图标转换为WPF可识别的ImageSource对象。具体操作是使用"FontIcon"控件,并将FontAwesome类名作为Text属性值来显示图标。 5. FontAwesome字体文件的安装和引用: 安装FontAwesome字体文件到项目中,通常需要先下载FontAwesome字体包,解压缩后会得到包含字体文件的FontAwesome-master文件夹。将这些字体文件添加到Windows Forms或WPF项目资源中,一般需要将字体文件复制到项目的相应目录,例如,对于Windows Forms,可能需要将字体文件放置在与主执行文件相同的目录下,或者将其添加为项目的嵌入资源。 6. 如何使用FontAwesome图标: 在使用FontAwesome图标时,需要注意图标名称的正确性。FontAwesome提供了一个图标检索工具,帮助开发者查找和确认每个图标的确切名称。每个图标都有一个对应的CSS类名,这个类名就是用来在应用程序中引用图标的。 7. 面向不同平台的应用开发: 由于FontAwesome最初是为Web开发设计的,将它集成到桌面应用中需要做一些额外的工作。在不同平台(如Web、Windows、Mac等)之间保持一致的用户体验,对于开发团队来说是一个重要考虑因素。 8. 版权和使用许可: 在使用FontAwesome字体图标时,需要遵守其提供的许可证协议。FontAwesome有多个许可证版本,包括免费的公共许可证和个人许可证。开发者在将FontAwesome集成到项目中时,应确保符合相关的许可要求。 9. 资源文件管理: 在管理包含FontAwesome字体文件的项目时,应当注意字体文件的维护和更新,确保在未来的项目版本中能够继续使用这些图标资源。 10. 其他图标字体库: FontAwesome并不是唯一一个图标字体库,还有其他类似的选择,例如Material Design Icons、Ionicons等。开发人员可以根据项目需求和偏好选择合适的图标库,并学习如何将它们集成到.NET桌面应用中。 以上知识点总结了如何将FontAwesome 4.7.0这一图标字体库应用于.NET开发中的Windows Forms和WPF应用程序,并涉及了相关的图形处理、资源管理和版权知识。通过这些步骤和细节,开发者可以更有效地增强其应用程序的视觉效果和用户体验。
recommend-type

【Postman进阶秘籍】:解锁高级API测试与管理的10大技巧

# 摘要 本文系统地介绍了Postman工具的基础使用方法和高级功能,旨在提高API测试的效率与质量。第一章概述了Postman的基本操作,为读者打下使用基础。第二章深入探讨了Postman的环境变量设置、集合管理以及自动化测试流程,特别强调了测试脚本的编写和持续集成的重要性。第三章介绍了数据驱动测试、高级断言技巧以及性能测试,这些都是提高测试覆盖率和测试准确性的关键技巧。第四章侧重于API的管理,包括版本控制、文档生成和分享,以及监控和报警系统的设计,这些是维护和监控API的关键实践。最后,第五章讨论了Postman如何与DevOps集成以及插件的使用和开发,展示了Postman在更广阔的应