胶囊网络的AgreementRouting类函数的forward函数部分中batch_size, input_caps, output_caps, = u_predict.size()运行报错RuntimeError: The size of tensor a (19) must match the size of tensor b (1728) at non-singleton dimension 1该怎么改

时间: 2023-08-14 09:55:48 浏览: 81
你遇到的错误是由于张量的尺寸不匹配所导致的。根据错误信息,输入张量的大小为(19),而输出张量的大小应该是(1728)。要解决这个问题,你需要确保输入和输出张量的大小在非单例维度上匹配。 首先,你可以检查一下输入张量u_predict的尺寸,确保它的形状是(batch_size, input_caps, output_caps)。如果u_predict的尺寸不正确,你可以调整它的形状以匹配预期的尺寸。 例如,如果u_predict的形状是(19, 32, 64),你可以使用torch.reshape函数将其调整为(19, 1728),代码如下: ```python u_predict = torch.reshape(u_predict, (batch_size, -1)) ``` 这将把input_caps和output_caps两个维度合并为一个维度。 另外,你还需要确保AgreementRouting类的forward函数接收到正确的输入。在调用forward函数之前,你需要检查一下输入张量的尺寸是否正确,并将其调整为(batch_size, input_caps, output_caps)。 如果你提供更多关于AgreementRouting类和相关代码的细节,我可以给出更具体的建议。
相关问题

class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(self.hidden_size, self.output_size) def forward(self, input_seq): batch_size, seq_len = input_seq[0], input_seq[1] h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) # output(batch_size, seq_len, num_directions * hidden_size) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output) pred = pred[:, -1, :] return pred这些代码分别是什么意思

这些代码是一个 PyTorch 模型的实现,该模型是一个基于 LSTM 的序列预测模型。具体解释如下: - `class LSTM(nn.Module):` 定义了一个 LSTM 模型类,继承自 PyTorch 的 nn.Module 类。 - `def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):` 定义了模型的构造函数,接收五个参数:输入特征维度 `input_size`、隐藏层特征维度 `hidden_size`、LSTM 层数 `num_layers`、输出特征维度 `output_size`、batch 大小 `batch_size`。 - `super().__init__():` 调用父类的构造函数,初始化模型的基本属性。 - `self.input_size = input_size`、`self.hidden_size = hidden_size`、`self.num_layers = num_layers`、`self.output_size = output_size`、`self.batch_size = batch_size` 分别初始化模型的输入特征维度、隐藏层特征维度、LSTM 层数、输出特征维度和 batch 大小等属性。 - `self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)` 定义了一个 LSTM 层,接收四个参数:输入特征维度,隐藏层特征维度,LSTM 层数和 batch_first 的值为 True,表示输入数据的维度顺序为 (batch_size, seq_len, input_size)。 - `self.linear = nn.Linear(self.hidden_size, self.output_size)` 定义了一个全连接层,用于将 LSTM 层的输出特征映射到指定的输出维度。 - `def forward(self, input_seq):` 定义了模型的前向传播函数,接收一个参数 `input_seq`,表示输入的序列数据。 - `batch_size, seq_len = input_seq[0], input_seq[1]` 解析输入数据的 batch 大小和序列长度。 - `h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 和 `c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 初始化 LSTM 层的初始隐藏状态和细胞状态,使用随机生成的张量,并将它们移动到指定的设备上。 - `output, _ = self.lstm(input_seq, (h_0, c_0))` 将输入序列和初始状态输入到 LSTM 层中,得到 LSTM 层的输出和最后一个时间步的隐藏状态。 - `pred = self.linear(output)` 将 LSTM 层的输出特征映射到指定的输出维度。 - `pred = pred[:, -1, :]` 取最后一个时间步的输出特征作为预测结果。 总的来说,这段代码实现了一个基于 LSTM 的序列预测模型,可以用于对时序数据进行预测。

class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, batch_size, device="cpu"): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=False) def forward(self, input_seq): batch_size, seq_len = input_seq.shape[0], input_seq.shape[1] h_0 = torch.randn(self.num_layers, batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_layers, batch_size, self.hidden_size).to(self.device) output, (h, c) = self.lstm(input_seq, (h_0, c_0)) return output, h

这段代码定义了一个名为 `LSTM` 的类,继承了 `nn.Module` 类,并实现了 `forward()` 方法。在 `forward()` 方法中,输入数据 `input_seq` 被传入 LSTM 模型中进行处理。该方法返回两个值: - `output`:LSTM 模型在处理输入数据后的输出,包括每个时间步的输出。 - `h`:LSTM 模型最后一个时间步的隐状态,作为后续模型处理的初始状态。 在 `__init__()` 方法中,类的实例变量被初始化,包括: - `device`:该变量指定了设备类型,默认为 "cpu"。 - `input_size`:该变量指定了输入数据的特征维度。 - `hidden_size`:该变量指定了 LSTM 模型中隐藏层的维度。 - `num_layers`:该变量指定了 LSTM 模型的层数。 - `batch_size`:该变量指定了输入数据的批次大小。 然后,通过 `nn.LSTM` 类创建了一个名为 `lstm` 的 LSTM 模型,该模型的输入特征维度为 `input_size`,隐藏层维度为 `hidden_size`,层数为 `num_layers`,并且设置了 `batch_first=True` 表示输入数据的第一维为批次大小,`bidirectional=False` 表示不使用双向 LSTM。 这个 `LSTM` 类的实例可以用于处理序列数据,并通过前向传播方法 `forward()` 对数据进行处理,返回处理后的输出 `output` 和最后一个时间步的隐状态 `h`。
阅读全文

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

在深度学习领域,Keras库提供了许多用于构建神经网络的层,其中`keras.layers.Conv1D`是专门用于处理一维数据的卷积层。本文将深入探讨`Conv1D`层中的`kernel_size`参数,以及它如何影响模型的构建和功能。 `kernel...
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

在Keras库中,`model.fit()`和`model.fit_generator()`是两个用于训练深度学习模型的关键函数。它们都用于更新模型的权重以最小化损失函数,但针对不同类型的输入数据和场景有不同的适用性。 首先,`model.fit()`是...
recommend-type

Keras中的多分类损失函数用法categorical_crossentropy

在深度学习领域,损失函数是衡量模型预测与真实值之间差异的重要工具,它在优化过程中起到了指导作用。本文主要讨论Keras中用于多分类任务的损失函数`categorical_crossentropy`,以及它与其他损失函数的区别。 `...
recommend-type

2025年软考高级 - 信息系统项目管理师考试备考全攻略

2025年软考高级 - 信息系统项目管理师考试备考全攻略
recommend-type

Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现

资源摘要信息: "该文档提供了一段关于在MATLAB环境下进行主成分分析(PCA)的代码,该代码针对的是著名的Fisher的Iris数据集(Iris Setosa部分),生成的输出包括帕累托图、载荷图和双图。Iris数据集是一个常用的教学和测试数据集,包含了150个样本的4个特征,这些样本分别属于3种不同的Iris花(Setosa、Versicolour和Virginica)。在这个特定的案例中,代码专注于Setosa这一种类的50个样本。" 知识点详细说明: 1. 主成分分析(PCA):PCA是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些新变量称为主成分。PCA在降维、数据压缩和数据解释方面非常有用。它能够将多维数据投影到少数几个主成分上,以揭示数据中的主要变异模式。 2. Iris数据集:Iris数据集由R.A.Fisher在1936年首次提出,包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。每个样本都标记有其对应的种类。Iris数据集被广泛用于模式识别和机器学习的分类问题。 3. MATLAB:MATLAB是一个高性能的数值计算和可视化软件,广泛用于工程、科学和数学领域。它提供了大量的内置函数,用于矩阵运算、函数和数据分析、算法开发、图形绘制和用户界面构建等。 4. 帕累托图:在PCA的上下文中,帕累托图可能是指对主成分的贡献度进行可视化,从而展示各个特征在各主成分上的权重大小,帮助解释主成分。 5. 载荷图:载荷图在PCA中显示了原始变量与主成分之间的关系,即每个主成分中各个原始变量的系数(载荷)。通过载荷图,我们可以了解每个主成分代表了哪些原始特征的信息。 6. 双图(Biplot):双图是一种用于展示PCA结果的图形,它同时显示了样本点和变量点。样本点在主成分空间中的位置表示样本的主成分得分,而变量点则表示原始变量在主成分空间中的载荷。 7. MATLAB中的标签使用:在MATLAB中,标签(Label)通常用于标记图形中的元素,比如坐标轴、图例、文本等。通过使用标签,可以使图形更加清晰和易于理解。 8. ObsLabels的使用:在MATLAB中,ObsLabels用于定义观察对象的标签。在绘制图形时,可以通过ObsLabels为每个样本点添加文本标签,以便于识别。 9. 导入Excel数据:MATLAB提供了工具和函数,用于将Excel文件中的数据导入到MATLAB环境。这对于分析存储在Excel表格中的数据非常有用。 10. 压缩包子文件:这里的"压缩包子文件"可能是一个误译或者打字错误,实际上应该是指一个包含代码的压缩文件包(Zip file)。文件名为PCA_IrisSetosa_sep28_1110pm.zip,表明这是一个包含了PCA分析Iris Setosa数据集的MATLAB代码压缩包,创建时间为2021年9月28日晚上11点10分。 代码可能包含的步骤和操作包括: - 加载数据:从Excel表格中读取数据。 - 数据预处理:为数据点编号,准备标签。 - PCA计算:执行PCA算法,得到特征向量和特征值。 - 结果可视化:使用MATLAB的绘图函数绘制帕累托图、载荷图和双图。 - 标签应用:在图形中用标签标记样本点。 - 代码改进:寻求方法将样本编号与双图中的符号同时显示。 这段代码为数据科学家和学生提供了一个很好的PCA应用实例,有助于深入理解PCA的实际应用以及如何在MATLAB中进行数据分析和可视化。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言深度学习】:keras和tensorflow带你进入AI世界

![【R语言深度学习】:keras和tensorflow带你进入AI世界](https://opengraph.githubassets.com/efb880e2026ddff3141a65a02e45b2d2498440e1920a6f7f26bd41f37f0108db/claCase/Classification-with-Keras-in-R) # 1. 深度学习与AI简介 深度学习作为人工智能(AI)的一个重要分支,近年来在图像识别、语音处理、自然语言处理等领域取得了重大突破。本章将对深度学习的概念进行概述,并解释它与传统机器学习的区别,最后展望AI技术的发展趋势及挑战。 ##
recommend-type

如何使用C语言中的分支结构(如if-else语句)来比较两个整数x和y,并根据比较结果按从小到大的顺序输出他们的值

在C语言中,你可以使用if-else语句结合条件运算符(?:)来比较两个整数x和y并按照指定的顺序输出。以下是一个简单的示例: ```c #include <stdio.h> int main() { int x, y; // 假设已经给x和y赋了值 if (x <= y) { // 如果x小于等于y printf("The smaller number is: %d\n", x); } else { // 否则 printf("The smaller number is: %d\n", y); // 输出较大的数 }
recommend-type

深入理解JavaScript类与面向对象编程

资源摘要信息:"JavaScript-Classes-OOP" JavaScript中的类是自ES6(ECMAScript 2015)引入的特性,它提供了一种创建构造函数和对象的新语法。类可以看作是创建和管理对象的蓝图或模板。JavaScript的类实际上是基于原型继承的语法糖,这使得基于原型的继承看起来更像传统的面向对象编程(OOP)语言,如Java或C++。 面向对象编程(OOP)是一种编程范式,它使用“对象”来设计应用和计算机程序。在OOP中,对象可以包含数据和代码,这些代码称为方法。对象中的数据通常被称为属性。OOP的关键概念包括类、对象、继承、多态和封装。 JavaScript类的创建和使用涉及以下几个关键点: 1. 类声明和类表达式:类可以通过类声明和类表达式两种形式来创建。类声明使用`class`关键字,后跟类名。类表达式可以是命名的也可以是匿名的。 ```javascript // 类声明 class Rectangle { constructor(height, width) { this.height = height; this.width = width; } } // 命名类表达式 const Square = class Square { constructor(sideLength) { this.sideLength = sideLength; } }; ``` 2. 构造函数:在JavaScript类中,`constructor`方法是一个特殊的方法,用于创建和初始化类创建的对象。一个类只能有一个构造函数。 3. 继承:继承允许一个类继承另一个类的属性和方法。在JavaScript中,可以使用`extends`关键字来创建一个类,该类继承自另一个类。被继承的类称为超类(superclass),继承的类称为子类(subclass)。 ```javascript class Animal { constructor(name) { this.name = name; } speak() { console.log(`${this.name} makes a noise.`); } } class Dog extends Animal { speak() { console.log(`${this.name} barks.`); } } ``` 4. 类的方法:在类内部可以定义方法,这些方法可以直接写在类的主体中。类的方法可以使用`this`关键字访问对象的属性。 5. 静态方法和属性:在类内部可以定义静态方法和静态属性。这些方法和属性只能通过类本身来访问,而不能通过实例化对象来访问。 ```javascript class Point { constructor(x, y) { this.x = x; this.y = y; } static distance(a, b) { const dx = a.x - b.x; const dy = a.y - b.y; return Math.sqrt(dx * dx + dy * dy); } } const p1 = new Point(5, 5); const p2 = new Point(10, 10); console.log(Point.distance(p1, p2)); // 输出:7.071... ``` 6. 使用new关键字创建实例:通过使用`new`关键字,可以基于类的定义创建一个新对象。 ```javascript const rectangle = new Rectangle(20, 10); ``` 7. 类的访问器属性:可以为类定义获取(getter)和设置(setter)访问器属性,允许你在获取和设置属性值时执行代码。 ```javascript class Temperature { constructor(celsius) { this.celsius = celsius; } get fahrenheit() { return this.celsius * 1.8 + 32; } set fahrenheit(value) { this.celsius = (value - 32) / 1.8; } } ``` JavaScript类和OOP的概念不仅限于上述这些,还包括如私有方法和属性、类字段(字段简写和计算属性名)等其他特性。这些特性有助于实现封装、信息隐藏等面向对象的特性,使得JavaScript的面向对象编程更加灵活和强大。随着JavaScript的发展,类和OOP的支持在不断地改进和增强,为开发者提供了更多编写高效、可维护和可扩展代码的工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依