nav_msgs::odometry

时间: 2023-07-29 22:04:22 浏览: 93
nav_msgs::Odometry 是 ROS(机器人操作系统)中的一个消息类型,用于传递机器人或车辆的运动信息。它包含了机器人的位姿信息(位置和姿态)以及与地面的速度和加速度相关的信息。 Odometry(里程计)是通过测量和积分机器人的传感器数据来估计机器人的运动。通常,里程计使用轮式编码器或惯性测量单元(IMU)来获取位置和方向的变化,并且可以通过多种算法进行计算和估计。 nav_msgs::Odometry 消息类型包含以下主要字段: - Header:包含了时间戳和坐标系信息,用于在不同的坐标系之间进行转换。 - Child Frame ID 和 Parent Frame ID:定义了父坐标系和子坐标系之间的关系。 - Pose:包含了机器人在地图坐标系中的位置和姿态信息。 - Twist:包含了机器人在地图坐标系中的线速度和角速度信息。 收到 nav_msgs::Odometry 消息后,可以使用其中的数据来进行导航、路径规划、自主定位等任务。比如,可以使用机器人当前的位置和方向来更新地图,或者通过估计的速度和加速度信息来控制机器人的运动。 在ROS中,nav_msgs::Odometry 是一个常用的消息类型,可以方便地在不同的ROS节点之间传递机器人的运动信息,有助于实现机器人的自主导航和定位功能。
相关问题

Subscriber <asv_msgs::StateArray> sub_1(n,"obstacle_states",1); Subscriber <nav_msgs::Odometry> sub_2(n,"/asv/state",1); typedef sync_policies::ApproximateTime <asv_msgs::StateArray,nav_msgs::Odometry> b; Synchronizer<b> sync1(b(1),sub_1,sub_2); sync1.registerCallback(boost::bind(&markersCallback,_1,_2));

这段代码是用于在ROS(Robot Operating System)中订阅两个不同类型的消息,并使用ApproximateTime同步它们的回调函数。让我解释一下每一行的作用: 1. 创建一个名为"obstacle_states"的订阅者(Subscriber),用于接收类型为asv_msgs::StateArray的消息。 2. 创建一个名为"/asv/state"的订阅者,用于接收类型为nav_msgs::Odometry的消息。 3. 定义一个名为b的类型,它是sync_policies::ApproximateTime模板类的实例化,用于将两个消息类型进行同步。 4. 创建一个名为sync1的Synchronizer对象,使用b类型作为模板参数,并将sub_1和sub_2作为构造函数的参数。 5. 使用boost库中的bind函数,将markersCallback函数绑定到sync1对象的回调函数中。 以上就是这段代码的基本解释。如果你有任何进一步的问题,请随时提问。

ros::Publisher pub_laser_cloud = n.advertise<sensor_msgs::PointCloud2>("/velodyne_points", 2); image_transport::ImageTransport it(n); image_transport::Publisher pub_image_left = it.advertise("/image_left", 2); image_transport::Publisher pub_image_right = it.advertise("/image_right", 2); ros::Publisher pubOdomGT = n.advertise<nav_msgs::Odometry> ("/odometry_gt", 5); nav_msgs::Odometry odomGT; odomGT.header.frame_id = "/camera_init"; odomGT.child_frame_id = "/ground_truth"; ros::Publisher pubPathGT = n.advertise<nav_msgs::Path> ("/path_gt", 5); nav_msgs::Path pathGT; pathGT.header.frame_id = "/camera_init"; 解释一下

这段代码是使用ROS进行机器人系统开发时常用的发布者(Publisher)定义和初始化部分。 首先定义了一个名为 `pub_laser_cloud` 的发布者,用于发布 Velodyne 激光雷达采集到的点云数据,话题名为 `/velodyne_points`,队列长度为 2。 接着使用了 `image_transport` 库定义了两个名为 `pub_image_left` 和 `pub_image_right` 的发布者,用于发布左右两个摄像头采集到的图像数据,话题名分别为 `/image_left` 和 `/image_right`,队列长度同样为 2。 然后定义了一个名为 `pubOdomGT` 的发布者,用于发布机器人的真实位姿数据,话题名为 `/odometry_gt`,队列长度为 5。同时,还定义了一个名为 `odomGT` 的 `nav_msgs::Odometry` 类型的变量,用于存储机器人的真实位姿数据。其中,`header.frame_id` 表示该位姿信息所在的坐标系,这里为 `/camera_init`,`child_frame_id` 表示机器人位姿信息对应的参考坐标系,这里为 `/ground_truth`。 最后定义了一个名为 `pubPathGT` 的发布者,用于发布机器人的真实运动轨迹数据,话题名为 `/path_gt`,队列长度为 5。同时,还定义了一个名为 `pathGT` 的 `nav_msgs::Path` 类型的变量,用于存储机器人的真实运动轨迹数据。其中,`header.frame_id` 表示该轨迹信息所在的坐标系,这里同样为 `/camera_init`。

相关推荐

please debug the following codes and answer in Chinese: #include <ros/ros.h> #include <serial/serial.h> #include void twist_call_back(const nav_msgs::Odometry::ConstPtr& odom_msg, int* vel_x, int* vel_y, bool* rc_flag) { *vel_x = odom_msg->twist.twist.linear.x * 100; *vel_y = odom_msg->twist.twist.linear.y * 100; *rc_flag = true; } int main (int argc, char** argv) { ros::init(argc, argv, "t265_serial_node"); ros::NodeHandle nh; ros::Rate loop_rate(30); serial::Serial fcu_serial; int vel_x,vel_y; bool rc_flag = false; ros::Subscriber t265_sub = nh.subscribe ("/camera/odom/sample",10,boost::bind(&twist_call_back,_1,&vel_x,&vel_y,&rc_flag)); fcu_serial.setPort("/dev/ttyUSB0"); fcu_serial.setBaudrate(115200); serial::Timeout to = serial::Timeout::simpleTimeout(1000); fcu_serial.setTimeout(to); try { //sudo chmod 777 /dev/ttyUSB0 fcu_serial.open(); } catch(const serial::IOException& e) { ROS_INFO_STREAM("Failed to open serial"); return -1; } if(fcu_serial.isOpen()) ROS_INFO_STREAM("serial opened"); else return -1; while(ros::ok()) { char str[20]; sprintf(str,"a+000+000b"); if(rc_flag) { vel_x >= 0 ? str[1] = '+' : (str[1] = '-') && (vel_x *= -1); vel_y >= 0 ? str[5] = '+' : (str[5] = '-') && (vel_y *= -1); str[2] = vel_x / 100 + 48; str[3] = (vel_x % 100) / 10 + 48; str[4] = (vel_x % 100) % 10 + 48; str[6] = vel_y / 100 + 48; str[7] = (vel_y % 100) / 10 + 48; str[8] = (vel_y % 100) % 10 + 48; ROS_INFO_STREAM(str); fcu_serial.write(str); rc_flag = false; } ros::spinOnce(); loop_rate.sleep(); } }

最新推荐

recommend-type

6_树莓派机载计算机通过串口指令控制无人机自主飞行教程

实际用户二次开发也可以通过监听飞控应答数据来判断是否达到,同时飞控是有实时向无人机广播自身位置、速度、姿态的数据的,可以通过查看数据类型为nav_msgs::Odometry,名称为flight_state的话题来判断无人机的实时...
recommend-type

基于yolov5目标检测的跌倒检测数据集(voc格式)-上部

基于yolov5目标检测的跌倒检测数据集(voc格式)——上部
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

python 如何将DWG转DXF

Python可以使用CAD软件的COM组件进行DWG到DXF的转换。以下是示例代码: ```python import win32com.client def dwg_to_dxf(dwg_path, dxf_path): acad = win32com.client.Dispatch("AutoCAD.Application") doc = acad.Documents.Open(dwg_path) doc.SaveAs(dxf_path, win32com.client.constants.acDXF) doc.Close() acad.Quit
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

写一个python代码遍历excel中的工作表,并提取每个工作表中的数据

好的,以下是Python代码示例: ``` import openpyxl # 打开Excel文件 workbook = openpyxl.load_workbook('example.xlsx') # 获取所有工作表名 worksheet_names = workbook.sheetnames # 遍历工作表并提取数据 for worksheet_name in worksheet_names: worksheet = workbook[worksheet_name] for row in worksheet.iter_rows(values_only=True):