gcn嵌入代码
时间: 2023-07-02 16:18:40 浏览: 116
GCN-GAT-Graphsage
以下是一个简单的示例,演示如何使用Graph Convolutional Networks (GCNs)进行节点嵌入:
```python
import torch.nn as nn
import torch.nn.functional as F
class GCNLayer(nn.Module):
def __init__(self, in_features, out_features):
super(GCNLayer, self).__init__()
self.linear = nn.Linear(in_features, out_features)
def forward(self, adj_matrix, node_features):
# 计算度矩阵
deg_matrix = torch.sum(adj_matrix, dim=1)
# 根据度矩阵归一化邻接矩阵
norm_adj_matrix = adj_matrix / torch.sqrt(deg_matrix.unsqueeze(1)) / torch.sqrt(deg_matrix.unsqueeze(0))
# 执行GCN层的线性变换
out = self.linear(norm_adj_matrix @ node_features)
# 应用ReLU激活函数
out = F.relu(out)
return out
class GCNEncoder(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(GCNEncoder, self).__init__()
self.layer1 = GCNLayer(in_features, hidden_features)
self.layer2 = GCNLayer(hidden_features, out_features)
def forward(self, adj_matrix, node_features):
out = self.layer1(adj_matrix, node_features)
out = self.layer2(adj_matrix, out)
return out
```
在这个示例中,我们定义了两个GCN层,每个层都由一个线性变换和ReLU激活函数组成。在编码器中,我们将两个GCN层链接在一起,以生成最终的节点嵌入。在前向传递过程中,我们首先通过度矩阵归一化邻接矩阵,然后将其与节点特征相乘,以获得节点表示。最后,我们应用ReLU激活函数来增强表示能力。
阅读全文