torch 残差网络
时间: 2023-11-14 12:11:41 浏览: 107
torch 残差网络(Residual Networks)是一种深度神经网络结构,通过引入残差块和跳跃连接的方式,解决了传统神经网络中梯度消失的问题,使得网络可以更深层次地进行训练。在 PyTorch 中,可以通过 nn.Module 实现残差网络的搭建,同时也可以使用预训练好的 ResNet 模型进行迁移学习。如果需要自己实现残差神经网络,可以参考引用中的代码实现。
相关问题
用torch写一个残差神经网络代码
以下是使用 Torch 实现的残差神经网络代码:
```lua
require 'nn'
function residualBlock(nChannels)
local convModule = nn.Sequential()
:add(nn.SpatialConvolution(nChannels, nChannels, 3,3, 1,1, 1,1))
:add(nn.SpatialBatchNormalization(nChannels))
:add(nn.ReLU(true))
:add(nn.SpatialConvolution(nChannels, nChannels, 3,3, 1,1, 1,1))
:add(nn.SpatialBatchNormalization(nChannels))
return nn.Sequential()
:add(nn.ConcatTable()
:add(convModule)
:add(nn.Identity()))
:add(nn.CAddTable())
:add(nn.ReLU(true))
end
function resNet(nChannels, nClasses, nResiduals)
local nets = nn.Sequential()
nets:add(nn.SpatialConvolution(3, nChannels, 3,3, 1,1, 1,1))
nets:add(nn.SpatialBatchNormalization(nChannels))
nets:add(nn.ReLU(true))
for i=1,nResiduals do
nets:add(residualBlock(nChannels))
end
nets:add(nn.SpatialAveragePooling(8,8))
nets:add(nn.View(nChannels))
nets:add(nn.Linear(nChannels, nClasses))
nets:add(nn.LogSoftMax())
return nets
end
model = resNet(64, 10, 5) -- 5 residual blocks
```
希望这个代码能够帮到您!
用python的torch写一个残差神经网络代码
以下是用 Python 的 PyTorch 编写残差神经网络的代码示例:
```python
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
if self.stride != 1 or self.in_channels != self.out_channels:
self.downsample = nn.Sequential(
nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, stride=self.stride, bias=False),
nn.BatchNorm2d(self.out_channels)
)
else:
self.downsample = None
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(residual)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
shortcut = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, shortcut))
self.in_channels = out_channels * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def ResNet50(num_classes):
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes=num_classes)
```
该代码实现了 ResNet50 神经网络,您可以更改参数来实现不同层数和其他类型的 ResNet 网络。
阅读全文