用torch写一个残差神经网络代码
时间: 2023-05-24 07:01:35 浏览: 93
PyTorch用残差网络训练 Imagenet 分类器代码.zip
5星 · 资源好评率100%
以下是使用 Torch 实现的残差神经网络代码:
```lua
require 'nn'
function residualBlock(nChannels)
local convModule = nn.Sequential()
:add(nn.SpatialConvolution(nChannels, nChannels, 3,3, 1,1, 1,1))
:add(nn.SpatialBatchNormalization(nChannels))
:add(nn.ReLU(true))
:add(nn.SpatialConvolution(nChannels, nChannels, 3,3, 1,1, 1,1))
:add(nn.SpatialBatchNormalization(nChannels))
return nn.Sequential()
:add(nn.ConcatTable()
:add(convModule)
:add(nn.Identity()))
:add(nn.CAddTable())
:add(nn.ReLU(true))
end
function resNet(nChannels, nClasses, nResiduals)
local nets = nn.Sequential()
nets:add(nn.SpatialConvolution(3, nChannels, 3,3, 1,1, 1,1))
nets:add(nn.SpatialBatchNormalization(nChannels))
nets:add(nn.ReLU(true))
for i=1,nResiduals do
nets:add(residualBlock(nChannels))
end
nets:add(nn.SpatialAveragePooling(8,8))
nets:add(nn.View(nChannels))
nets:add(nn.Linear(nChannels, nClasses))
nets:add(nn.LogSoftMax())
return nets
end
model = resNet(64, 10, 5) -- 5 residual blocks
```
希望这个代码能够帮到您!
阅读全文