残差网络pytorch
时间: 2023-10-20 12:35:08 浏览: 178
残差网络是一种能够通过增加深度来提高准确率的神经网络模型。它使用了跳跃连接来缓解梯度消失问题,并且容易进行优化。在PyTorch中,我们可以使用代码实现残差网络。
以下是一个使用PyTorch实现残差网络的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = F.relu(self.bn(self.conv1(x)))
out = self.bn(self.conv2(out))
out += residual
out = F.relu(out)
return out
class ResidualNetwork(nn.Module):
def __init__(self):
super(ResidualNetwork, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5)
self.mp = nn.MaxPool2d(2)
self.rblock1 = ResidualBlock(16)
self.rblock2 = ResidualBlock(32)
self.fc = nn.Linear(512, 10)
def forward(self, x):
in_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.rblock1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.rblock2(x)
x = x.view(in_size, -1)
out = self.fc(x)
return out
model = ResidualNetwork()
```
在这个示例代码中,我们定义了一个`ResidualBlock`类来表示残差块,其中包含了两个卷积层和批标准化层。然后,我们定义了一个`ResidualNetwork`类,它包含了两个残差块和其他的卷积层、池化层和全连接层。最后,我们创建了一个`ResidualNetwork`对象作为我们的残差网络模型。
这是一个简单的残差网络模型,在实际应用中,你可以根据需要修改网络的结构和参数。<span class="em">1</span><span class="em">2</span><span class="em">3</span><span class="em">4</span>
阅读全文
相关推荐


















