Gibbs抽样二元贝塔分布代码
时间: 2023-07-09 18:26:50 浏览: 115
统计计算-Gibbs抽样
5星 · 资源好评率100%
下面是使用R语言实现Gibbs抽样二元贝塔分布的代码,其中我们使用Beta分布作为先验分布:
```R
# 参数设置
n <- 1000 # 样本数量
alpha <- 2 # Beta分布超参数1
beta <- 2 # Beta分布超参数2
# 初始化状态
x <- rep(0, n)
x[1] <- rbinom(1, 1, 0.5)
# 迭代更新状态
for (i in 2:n) {
# 计算除去x[i]之外,其他x[j]取值为1的总数
sum_j <- sum(x[-i])
# 计算Bernoulli分布的参数
p <- (alpha + sum_j) / (alpha + beta + i - 1)
# 更新状态
x[i] <- rbinom(1, 1, p)
}
# 绘制状态序列的直方图
hist(x, breaks = c(-0.5, 0.5, 1.5), col = "grey", xlab = "x", main = "Gibbs Sampling Binary Beta Distribution")
```
在这个代码中,我们使用了`rbinom`函数来生成Bernoulli分布的随机数,其中`1`表示生成的随机数的数量,`p`表示生成随机数的概率。我们可以通过绘制状态序列的直方图来检查生成的二元序列是否符合我们的期望。
阅读全文