def __init__(self, ddconfig, lossconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, batch_resize_range=None, scheduler_config=None, lr_g_factor=1.0, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw use_ema=False ):解析
时间: 2024-02-10 13:19:17 浏览: 162
这是一个Python类的初始化方法,其中包含了如下参数:
- `ddconfig`:一个字典,包含了数据相关的配置信息。
- `lossconfig`:一个字典,包含了损失函数相关的配置信息。
- `n_embed`:一个整数,表示嵌入向量的数量。
- `embed_dim`:一个整数,表示嵌入向量的维度。
- `ckpt_path`:一个字符串,表示模型的检查点路径,默认为None。
- `ignore_keys`:一个列表,包含了不需要加载的键名,例如不需要加载优化器的参数。
- `image_key`:一个字符串,表示输入数据中图片的键名,默认为"image"。
- `colorize_nlabels`:一个整数,表示需要进行颜色填充的类别数量,默认为None。
- `monitor`:一个字符串,表示需要监视的指标,默认为None。
- `batch_resize_range`:一个元组,表示批量调整输入数据大小的范围,默认为None。
- `scheduler_config`:一个字典,表示学习率调度器的配置信息,默认为None。
- `lr_g_factor`:一个浮点数,表示生成器学习率的缩放因子,默认为1.0。
- `remap`:一个字典,包含了需要重映射的键名和新的键名,用于更新检查点中的参数名称。
- `sane_index_shape`:一个布尔值,表示向量量化器是否需要返回索引的形状,默认为False。
- `use_ema`:一个布尔值,表示是否使用指数移动平均来更新模型参数,默认为False。
相关问题
super().__init__() self.embed_dim = embed_dim self.n_embed = n_embed self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)解析
这是一个Python类的初始化方法,其中包含了如下代码:
- `super().__init__()`:调用父类的初始化方法。
- `self.embed_dim = embed_dim`:将传入的`embed_dim`参数赋值给类的实例变量`embed_dim`。
- `self.n_embed = n_embed`:将传入的`n_embed`参数赋值给类的实例变量`n_embed`。
- `self.image_key = image_key`:将传入的`image_key`参数赋值给类的实例变量`image_key`。
- `self.encoder = Encoder(**ddconfig)`:实例化一个`Encoder`类的对象,并将`ddconfig`参数解包后传入。
- `self.decoder = Decoder(**ddconfig)`:实例化一个`Decoder`类的对象,并将`ddconfig`参数解包后传入。
- `self.loss = instantiate_from_config(lossconfig)`:通过`instantiate_from_config()`函数实例化一个损失函数对象,并将`lossconfig`参数传入。
- `self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)`:实例化一个`VectorQuantizer`类的对象,其中`n_embed`和`embed_dim`分别为向量量化器的嵌入向量数量和维度,`beta`为损失函数中的权重因子,`remap`为需要重映射的键名和新的键名,`sane_index_shape`表示向量量化器是否需要返回索引的形状。
- `self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)`:实例化一个`Conv2d`类的对象,用于将潜空间编码为嵌入向量。
- `self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)`:实例化一个`Conv2d`类的对象,用于将嵌入向量解码为潜空间。
def __init__(self, img_size=224, patch_size=(2,4,4), in_chans=3, embed_dim=96, norm_layer=None): super().__init__() self.patch_size = patch_size img_size = to_2tuple(img_size) self.in_chans = in_chans self.embed_dim = embed_dim patches_resolution = [img_size[0] // patch_size[1], img_size[1] // patch_size[2]] self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None
这是一个 PyTorch 的模型初始化函数,它定义了一个 3D 卷积层和一个归一化层。主要参数包括:
- img_size:图像的尺寸。
- patch_size:划分图像的 patch 的大小。
- in_chans:输入图像的通道数。
- embed_dim:嵌入向量的维度。
- norm_layer:归一化层的类型。
该函数的作用是将输入的图像分为多个 patch,并且将每个 patch 映射到一个嵌入向量。这是 ViT 模型(Vision Transformer)的核心思想。ViT 模型将图像分为多个 patch,然后通过 Transformer 来处理这些 patch,最后输出整个图像的特征向量。
阅读全文