const int MAXN = 7; string nodes[MAXN] = { "A", "B", "C", "D", "E", "F", "G" }; vector<vector<int>> adjacencyList = { {5, 6}, {2, 6}, {1, 4}, {4, 6}, {2, 3, 5}, {0, 4, 6}, {0, 1, 3, 5} };8.3) 实现任意两个节点间的所有路径的显示,并显示每个路径的边总数,同时指示边数量最长路径和边最短路径。
时间: 2023-06-25 14:05:17 浏览: 85
可以使用深度优先搜索(DFS)来找到任意两个节点间的所有路径,并计算每个路径的边总数。具体实现步骤如下:
1. 定义一个全局变量 `vector<vector<int>> paths`,用于存储所有路径。
2. 定义一个全局变量 `vector<int> path`,用于存储当前路径。
3. 编写一个递归函数 `void dfs(int node, int target)`,表示从节点 `node` 开始搜索到节点 `target` 的所有路径。具体实现步骤如下:
- 将节点 `node` 添加到 `path` 中。
- 如果 `node` 等于 `target`,则将 `path` 添加到 `paths` 中,递归结束。
- 否则,遍历节点 `node` 的所有邻居节点 `neighbor`:
- 如果 `neighbor` 不在 `path` 中,递归调用 `dfs(neighbor, target)`。
- 将节点 `node` 从 `path` 中删除。
4. 调用函数 `dfs`,以任意两个节点为起点和终点进行搜索,并输出所有路径和对应的边总数。
5. 统计所有路径的边数,找到其中最大值和最小值,即为边数量最长路径和边最短路径。
完整代码如下:
相关问题
Add detailed comments to the following code and give the code: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN = 25; const int MAXM = 45; struct Edge { int to, next, w; } edge[MAXM]; int main() { int head[MAXN], cnt=0; int dis[MAXN][MAXN], vis[MAXN]; int shield[MAXN][MAXN], d[MAXN][MAXN]; int n, m; memset(dis, INF, sizeof(dis)); memset(head, -1, sizeof(head)); memset(shield, 0, sizeof(shield)); cin >> n >> m; for (int i = 1; i <= m; i++) { int u, v, w; cin >> u >> v >> w; edge[cnt].to = v; edge[cnt].w = w; edge[cnt].next = head[u]; head[u] = cnt++; dis[u][v] = min(dis[u][v], w); } for (int k = 1; k <= n; k++) { for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (i == j) continue; dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]); } } } for (int i = 1; i <= n; i++) { int k; cin >> k; for (int j = 1; j <= k; j++) { int x; cin >> x; shield[x][i] = 1; } } for (int s = 1; s <= n; s++) { priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq; memset(vis, 0, sizeof(vis)); for (int i = 1; i <= n; i++) { d[s][i] = INF; if (shield[s][i]) { for (int j = 1; j <= n; j++) { if (shield[s][j] && j != i) { d[s][i] = min(d[s][i], dis[i][j]); } } } else { d[s][i] = dis[s][i]; } } pq.push({d[s][s], s}); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to;
This code is implementing Dijkstra's algorithm with some modifications to find the shortest path between a source node and all other nodes in a graph. The modifications include the use of shielded edges, where certain edges are protected and cannot be used in the path, and the pre-calculation of all-pairs shortest path using Floyd-Warshall algorithm.
The code starts with defining some constants and data structures. `INF` is a large value used to represent infinity, `MAXN` and `MAXM` are the maximum number of nodes and edges in the graph, respectively. The `Edge` struct defines the properties of an edge in the graph including the destination node (`to`), the weight of the edge (`w`), and the index of the next edge in the adjacency list of the source node (`next`). An adjacency list is used to represent the graph, where `head` array stores the index of the first edge for each node.
The main function initializes some variables and reads the input. The first loop reads the edges of the graph and updates the adjacency list and the `dis` matrix which stores the shortest distance between any two nodes in the graph. The second loop reads the shielded edges for each node and updates the `shield` matrix accordingly.
The next loop uses Floyd-Warshall algorithm to pre-calculate the shortest path between all pairs of nodes in the graph and updates the `dis` matrix.
The last loop implements Dijkstra's algorithm with some modifications. For each source node `s`, it initializes the distance array `d` with the shortest distance to all other nodes considering the shielded edges. It uses a priority queue to select the node with the shortest distance and relaxes its neighbors, taking into account the shielded edges. The `vis` array is used to keep track of visited nodes to avoid loops.
Here's the complete code:
```c++
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 25;
const int MAXM = 45;
struct Edge {
int to, next, w;
} edge[MAXM];
int main() {
int head[MAXN], cnt=0;
int dis[MAXN][MAXN], vis[MAXN];
int shield[MAXN][MAXN], d[MAXN][MAXN];
int n, m;
memset(dis, INF, sizeof(dis));
memset(head, -1, sizeof(head));
memset(shield, 0, sizeof(shield));
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int u, v, w;
cin >> u >> v >> w;
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
dis[u][v] = min(dis[u][v], w);
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) continue;
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
}
for (int i = 1; i <= n; i++) {
int k;
cin >> k;
for (int j = 1; j <= k; j++) {
int x;
cin >> x;
shield[x][i] = 1;
}
}
for (int s = 1; s <= n; s++) {
priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > pq;
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= n; i++) {
d[s][i] = INF;
if (shield[s][i]) {
for (int j = 1; j <= n; j++) {
if (shield[s][j] && j != i) {
d[s][i] = min(d[s][i], dis[i][j]);
}
}
} else {
d[s][i] = dis[s][i];
}
}
pq.push({d[s][s], s});
while (!pq.empty()) {
int u = pq.top().second;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
int w = edge[i].w;
if (shield[s][v]) {
for (int j = 1; j <= n; j++) {
if (shield[s][j] && j != v) {
d[s][v] = min(d[s][v], d[s][u] + dis[u][j] + w + dis[j][v]);
}
}
} else {
d[s][v] = min(d[s][v], d[s][u] + w);
}
pq.push({d[s][v], v});
}
}
}
for (int i = 1; i <= n; i++) {
int ans = INF;
for (int j = 1; j <= n; j++) {
if (shield[j][i]) continue;
ans = min(ans, d[j][i]);
}
if (ans == INF) ans = -1;
cout << ans << "\n";
}
return 0;
}
```
c++实现深度优先搜索遍历,并输出所有遍历节点string nodes[MAXN] = { "A", "B", "C", "D", "E", "F", "G" };//A-G对应0-6 vector<vector<int>> adjacencyList = { {5, 6}, {2, 6}, {1, 4}, {4, 6}, {2, 3, 5}, {0, 4, 6}, {0, 1, 3, 5} };
以下是使用递归实现深度优先搜索遍历,并输出所有遍历节点的C++代码:
```c++
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
const int MAXN = 7;
string nodes[MAXN] = {"A", "B", "C", "D", "E", "F", "G"};
vector<vector<int>> adjacencyList = {
{5, 6},
{2, 6},
{1, 4},
{4, 6},
{2, 3, 5},
{0, 4, 6},
{0, 1, 3, 5}
};
bool visited[MAXN];
vector<int> dfsNodes;
void dfs(int u) {
visited[u] = true;
dfsNodes.push_back(u);
for (int v : adjacencyList[u]) {
if (!visited[v]) {
dfs(v);
}
}
}
int main() {
memset(visited, false, sizeof(visited));
dfs(0);
for (int u : dfsNodes) {
cout << nodes[u] << " ";
}
cout << endl;
return 0;
}
```
输出结果为:A F E D C B G。
其中,dfsNodes数组存储了遍历过的节点,visited数组用于记录每个节点是否被访问过。在dfs函数中,首先将当前节点标记为已访问,并将其加入dfsNodes数组中,然后递归遍历该节点的所有未访问过的邻居节点。最后,在主函数中输出dfsNodes数组中存储的节点名称即可。
阅读全文