遗传算法求解函数f(x)=xsin(10Π*x)+2.0 x∈[-1,2]的最大值c语言

时间: 2023-10-07 15:11:02 浏览: 50
遗传算法是一种在优化问题中广泛使用的方法,可以用来求解函数最大值。下面是一个简单的遗传算法实现函数最大值的例子,使用C语言编写: ``` #include <stdio.h> #include <stdlib.h> #include <time.h> #define POP_SIZE 50 // 种群大小 #define GEN_MAX 100 // 迭代次数 #define ELITE 2 // 保留精英个体数 #define MUTATE_PROB 0.1 // 变异概率 double fitness(double x); // 目标函数 // 个体结构体 typedef struct { double x; // 自变量x double score; // 适应度得分 } individual_t; // 遗传算法主函数 int main() { srand(time(NULL)); // 初始化种群 individual_t population[POP_SIZE]; for (int i = 0; i < POP_SIZE; i++) { population[i].x = -1.0 + (double) rand() / RAND_MAX * 3.0; // 生成-1~2之间的随机数 } // 迭代 for (int gen = 0; gen < GEN_MAX; gen++) { // 计算适应度得分 for (int i = 0; i < POP_SIZE; i++) { population[i].score = fitness(population[i].x); } // 排序,选择精英 qsort(population, POP_SIZE, sizeof(individual_t), [](const void* a, const void* b) -> int { double fa = ((individual_t*)a)->score; double fb = ((individual_t*)b)->score; return (fa < fb) ? 1 : (fa > fb) ? -1 : 0; }); individual_t elite[ELITE]; for (int i = 0; i < ELITE; i++) { elite[i] = population[i]; } // 产生下一代 individual_t next_population[POP_SIZE]; for (int i = 0; i < POP_SIZE; i++) { // 轮盘赌选择 double total_score = 0.0; for (int j = 0; j < POP_SIZE; j++) { total_score += population[j].score; } double r = (double) rand() / RAND_MAX * total_score; int index = 0; while (r > 0) { r -= population[index].score; index++; } index--; // 复制个体 next_population[i] = population[index]; // 变异 if ((double) rand() / RAND_MAX < MUTATE_PROB) { next_population[i].x += ((double) rand() / RAND_MAX - 0.5) * 0.1; // 产生-0.05~0.05之间的随机数 } } // 保留精英 for (int i = 0; i < ELITE; i++) { next_population[i] = elite[i]; } // 更新种群 for (int i = 0; i < POP_SIZE; i++) { population[i] = next_population[i]; } } // 输出结果 printf("x=%.4f, f(x)=%.4f\n", population[0].x, population[0].score); return 0; } // 目标函数 double fitness(double x) { return x * sin(10 * 3.14159 * x) + 2.0; } ``` 在这个例子中,我们使用遗传算法求解目标函数 f(x) = x*sin(10πx) + 2.0 的最大值。遗传算法通过不断地进化种群来搜索最优解,每个个体代表一个可能的解,适应度函数用来评估个体的优劣程度,种群中的个体通过选择、交叉和变异等操作来产生下一代种群,精英策略用来保留历史最优解。最终,遗传算法会找到一个接近最优解的解。

相关推荐

最新推荐

410_打印日历.ipynb

python基础教程,ipynb格式,一个文件一个知识点。

全面性火箭发动机设计软件

全面性火箭发动机设计软件

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

pyinstaller --onefile your_program.py 这段代码添加到程序的什么位置

在使用 PyInstaller 封装 Python 程序时,需要在命令行中执行 PyInstaller 的命令,而不是将命令添加到程序中。 具体来说,需要在命令行中进入 Python 程序所在的目录,然后执行以下命令: ``` pyinstaller --onefile your_program.py ``` 其中,--onefile 表示将程序打包成一个单独的可执行文件,your_program.py 是你要打包的 Python 程序的文件名。 执行完毕后,PyInstaller 会在当前目录下生成一个 dist 文件夹,其中包含了打包好的可执行文件和依赖库等文件。 需要注意的是,