遗传算法求函数最大值f(x)=xsin(10π*x)+2.0 x∈[-1,2](C语言实现)
时间: 2023-10-07 09:11:04 浏览: 110
好的,针对您的问题,以下是使用遗传算法求解函数最大值f(x)=xsin(10π*x)+2.0 x∈[-1,2]的C语言实现。
首先需要定义个体结构体,包含个体基因型、适应度等信息:
```c
#define POP_SIZE 100 // 种群大小
typedef struct {
double x; // 基因型
double fitness; // 适应度
} individual_t;
```
接下来,需要实现个体的初始化和适应度计算函数:
```c
// 随机生成个体基因型
void init_individuals(individual_t *pop) {
for (int i = 0; i < POP_SIZE; i++) {
pop[i].x = -1.0 + (double)rand() / RAND_MAX * 3.0; // 基因型初始化为[-1, 2]之间的随机数
}
}
// 计算个体适应度
double calc_fitness(double x) {
return x * sin(10.0 * M_PI * x) + 2.0;
}
void evaluate_individual(individual_t *pop) {
for (int i = 0; i < POP_SIZE; i++) {
pop[i].fitness = calc_fitness(pop[i].x);
}
}
```
接下来,需要实现选择、交叉和变异函数:
```c
// 选择函数
void selection(individual_t *pop, individual_t *new_pop) {
double fitness_sum = 0.0;
double cum_sum[POP_SIZE];
// 计算适应度总和
for (int i = 0; i < POP_SIZE; i++) {
fitness_sum += pop[i].fitness;
}
// 计算累积适应度
cum_sum[0] = pop[0].fitness / fitness_sum;
for (int i = 1; i < POP_SIZE; i++) {
cum_sum[i] = cum_sum[i - 1] + pop[i].fitness / fitness_sum;
}
// 选择新种群
for (int i = 0; i < POP_SIZE; i++) {
double r = (double)rand() / RAND_MAX;
int j = 0;
while (r > cum_sum[j]) j++;
new_pop[i] = pop[j];
}
}
// 交叉函数
void crossover(individual_t *pop, individual_t *new_pop) {
for (int i = 0; i < POP_SIZE; i += 2) {
double r = (double)rand() / RAND_MAX;
if (r < CROSSOVER_RATE) {
int index1 = rand() % POP_SIZE;
int index2 = rand() % POP_SIZE;
new_pop[i].x = pop[index1].x;
new_pop[i + 1].x = pop[index2].x;
double alpha = (double)rand() / RAND_MAX;
new_pop[i].x = alpha * pop[index2].x + (1.0 - alpha) * pop[index1].x;
new_pop[i + 1].x = alpha * pop[index1].x + (1.0 - alpha) * pop[index2].x;
}
else {
new_pop[i] = pop[i];
new_pop[i + 1] = pop[i + 1];
}
}
}
// 变异函数
void mutation(individual_t *pop) {
for (int i = 0; i < POP_SIZE; i++) {
double r = (double)rand() / RAND_MAX;
if (r < MUTATION_RATE) {
double delta = (double)rand() / RAND_MAX * 0.1 - 0.05;
pop[i].x += delta;
if (pop[i].x < -1.0) pop[i].x = -1.0;
if (pop[i].x > 2.0) pop[i].x = 2.0;
}
}
}
```
最后,实现主函数进行遗传算法的迭代求解:
```c
int main() {
srand(time(NULL));
individual_t pop[POP_SIZE];
individual_t new_pop[POP_SIZE];
init_individuals(pop);
evaluate_individual(pop);
int generation = 0;
while (generation < MAX_GENERATION) {
selection(pop, new_pop);
crossover(new_pop, pop);
mutation(pop);
evaluate_individual(pop);
generation++;
}
// 输出最优解
double max_fitness = -INFINITY;
int max_index = 0;
for (int i = 0; i < POP_SIZE; i++) {
if (pop[i].fitness > max_fitness) {
max_fitness = pop[i].fitness;
max_index = i;
}
}
printf("max fitness = %f, x = %f\n", max_fitness, pop[max_index].x);
return 0;
}
```
整个遗传算法的实现就完成了。当然,需要根据实际情况调整各种参数,如种群大小、迭代次数、交叉率、变异率等,以获得更好的求解效果。
阅读全文