sutherland-hodgman算法
时间: 2023-04-15 11:00:39 浏览: 379
Sutherland-Hodgman算法是一种计算多边形交集的算法。它的基本思想是将一个多边形沿着另一个多边形的边界进行裁剪,得到它们的交集。这个算法的主要优点是简单易懂,容易实现。它的缺点是可能会产生不必要的计算,导致效率较低。
相关问题
sutherland-hodgman算法vc++
Sutherland-Hodgman算法是一种计算多边形交集的算法,可以用于计算裁剪和填充等应用。下面是一个使用VC++实现Sutherland-Hodgman算法的示例代码:
```c++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct Point {
double x, y;
};
// 判断两个点是否在多边形的同一侧
bool SameSide(const Point& p1, const Point& p2, const Point& a, const Point& b) {
double cp1 = (b.x - a.x) * (p1.y - a.y) - (b.y - a.y) * (p1.x - a.x);
double cp2 = (b.x - a.x) * (p2.y - a.y) - (b.y - a.y) * (p2.x - a.x);
return cp1 * cp2 >= 0;
}
// 计算两个点之间的交点
Point Intersect(const Point& p1, const Point& p2, const Point& a, const Point& b) {
double u = ((a.y - b.y) * (p1.x - a.x) - (a.x - b.x) * (p1.y - a.y)) / ((b.x - a.x) * (p1.y - p2.y) - (b.y - a.y) * (p1.x - p2.x));
return { p1.x + u * (p2.x - p1.x), p1.y + u * (p2.y - p1.y) };
}
// Sutherland-Hodgman算法
vector<Point> SutherlandHodgman(const vector<Point>& subjectPolygon, const vector<Point>& clipPolygon) {
vector<Point> outputList = subjectPolygon;
for (int i = 0; i < clipPolygon.size(); i++) {
vector<Point> inputList = outputList;
outputList.clear();
Point S = clipPolygon[i];
Point E = clipPolygon[(i + 1) % clipPolygon.size()];
for (int j = 0; j < inputList.size(); j++) {
Point P = inputList[j];
Point Q = inputList[(j + 1) % inputList.size()];
if (SameSide(P, S, E, Q)) {
if (!SameSide(P, E, S, Q)) {
outputList.push_back(Intersect(P, Q, S, E));
}
outputList.push_back(Q);
}
else if (SameSide(P, E, S, Q)) {
outputList.push_back(Intersect(P, Q, S, E));
}
}
}
return outputList;
}
int main() {
vector<Point> subjectPolygon = { {0, 0}, {100, 0}, {100, 100}, {0, 100} };
vector<Point> clipPolygon = { {50, 50}, {150, 50}, {150, 150}, {50, 150} };
vector<Point> result = SutherlandHodgman(subjectPolygon, clipPolygon);
for (int i = 0; i < result.size(); i++) {
cout << "(" << result[i].x << ", " << result[i].y << ")" << endl;
}
return 0;
}
```
这个示例代码实现了一个计算矩形和正方形交集的例子。输入的两个多边形分别是`subjectPolygon`和`clipPolygon`,输出的多边形是`result`。程序的输出应该是一个四边形,表示矩形和正方形的交集。
写一个mfc的sutherland-hodgman算法
以下是一个简单的 MFC 实现 Sutherland-Hodgman 算法的代码:
```cpp
// 定义多边形的点数
#define POLYGON_SIZE 4
// 定义两个点的结构体
struct Point {
float x;
float y;
};
// 定义多边形的结构体
struct Polygon {
Point points[POLYGON_SIZE];
};
// Sutherland-Hodgman 算法
Polygon clipPolygon(Polygon subjectPolygon, Polygon clipPolygon) {
Polygon outputPolygon = subjectPolygon;
// 依次遍历裁剪多边形的边
for (int i = 0; i < POLYGON_SIZE; i++) {
Point clipStart = clipPolygon.points[i];
Point clipEnd = clipPolygon.points[(i + 1) % POLYGON_SIZE];
Polygon inputPolygon = outputPolygon;
outputPolygon = {};
// 依次遍历多边形的边
for (int j = 0; j < POLYGON_SIZE; j++) {
Point subjectStart = inputPolygon.points[j];
Point subjectEnd = inputPolygon.points[(j + 1) % POLYGON_SIZE];
float startLocation = (clipEnd.x - clipStart.x) * (subjectStart.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectStart.x - clipStart.x);
float endLocation = (clipEnd.x - clipStart.x) * (subjectEnd.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectEnd.x - clipStart.x);
// 判断起点位置
if (startLocation >= 0) {
outputPolygon.points[outputPolygonSize++] = subjectStart;
}
// 判断起点和终点位置
if (startLocation * endLocation < 0) {
float intersectionX = (clipEnd.x - clipStart.x) * (subjectStart.y - clipStart.y) - (clipEnd.y - clipStart.y) * (subjectStart.x - clipStart.x);
float intersectionY = (clipEnd.y - clipStart.y) * (subjectEnd.x - clipStart.x) - (clipEnd.x - clipStart.x) * (subjectEnd.y - clipStart.y);
intersectionX /= (subjectEnd.y - subjectStart.y) * (clipEnd.x - clipStart.x) - (subjectEnd.x - subjectStart.x) * (clipEnd.y - clipStart.y);
intersectionY /= (subjectEnd.y - subjectStart.y) * (clipEnd.x - clipStart.x) - (subjectEnd.x - subjectStart.x) * (clipEnd.y - clipStart.y);
Point intersection = { intersectionX, intersectionY };
outputPolygon.points[outputPolygonSize++] = intersection;
}
}
}
return outputPolygon;
}
// 绘制多边形
void drawPolygon(CDC* pDC, Polygon polygon) {
CPoint points[POLYGON_SIZE];
for (int i = 0; i < POLYGON_SIZE; i++) {
points[i] = CPoint(polygon.points[i].x, polygon.points[i].y);
}
pDC->Polygon(points, POLYGON_SIZE);
}
// 绘制裁剪框
void drawClipRectangle(CDC* pDC, Polygon clipPolygon) {
CPoint points[POLYGON_SIZE];
for (int i = 0; i < POLYGON_SIZE; i++) {
points[i] = CPoint(clipPolygon.points[i].x, clipPolygon.points[i].y);
}
pDC->Polyline(points, POLYGON_SIZE);
}
// 绘制函数
void CMyView::OnDraw(CDC* pDC)
{
CMyDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
// 定义多边形和裁剪框
Polygon subjectPolygon = { { { 100, 100 }, { 200, 100 }, { 200, 200 }, { 100, 200 } } };
Polygon clipPolygon = { { { 150, 150 }, { 250, 150 }, { 250, 250 }, { 150, 250 } } };
// 绘制多边形和裁剪框
drawPolygon(pDC, subjectPolygon);
drawClipRectangle(pDC, clipPolygon);
// 裁剪多边形
Polygon outputPolygon = clipPolygon(subjectPolygon, clipPolygon);
// 绘制裁剪后的多边形
drawPolygon(pDC, outputPolygon);
}
```
在该代码中,我们定义了结构体 Point 和 Polygon 表示点和多边形,clipPolygon 函数接收两个多边形作为参数,返回裁剪后的多边形。我们使用 MFC 的 CDC 绘制多边形和裁剪框,并使用 drawPolygon 函数绘制多边形,使用 drawClipRectangle 函数绘制裁剪框。最后,在 OnDraw 函数中调用 clipPolygon 函数对多边形进行裁剪,并使用 drawPolygon 函数绘制裁剪后的多边形。
阅读全文