“def shortest_hamilton_path(graph): # 初始化dp数组,dp[i][j]表示从0到j,经过i中的节点的所有路径距离最短 n = len(graph) dp = [[float('inf')] * n for _ in range(1 << n)] dp[1][0] = 0 # 动态规划 for s in range(1, 1 << n): for i in range(n): if s & (1 << i): for j in range(n): if j != i and s & (1 << j) and graph[j][i] != float('inf'): dp[s][i] = min(dp[s][i], dp[s - (1 << i)][j] + graph[j][i]) # 计算最短路径 min_dist = float('inf') for i in range(n): if graph[i][0] != float('inf'): min_dist = min(min_dist, dp[(1 << n) - 1][i] + graph[i][0]) return min_dist # 测试 graph = [ [0, 2, 4, 5], [2, 0, 6, 7], [4, 6, 0, 8], [5, 7, 8, 0] ] print(shortest_hamilton_path(graph)) # 输出最短路径距离”这个哈密顿图求最短路问题的代码正确吗,这个代码有设置权值吗,最短路问题不是边的权之和相加最小吗,如果没有设置权值,那么他的距离是用什么表示的?

时间: 2024-04-07 10:29:32 浏览: 16
这个哈密顿图求最短路问题的代码是正确的,但是没有设置权值。在这个代码中,距离是用最短路径的长度表示的,而不是边的权值之和。这是因为这个问题是一个哈密顿回路问题,即需要经过所有节点一次且仅一次,因此最短路径的长度是由所有边的权值之和决定的,而不是某条特定的路径。在这个代码中,使用动态规划的方式计算了经过所有节点的所有路径的最短路径长度,然后再在这些最短路径长度中选择最小值作为最终的最短路径长度。
相关问题

def find_shortest_path(): start = start_combobox.get() end = end_combobox.get() path, distance = dijkstra_shortest_path(graph, start, end) print("最短路径:", path) print("最短距离:", distance) visualize_graph(graph, path) text = '最短距离'+str(distance) text2 = '最短路径:'+str(path) plot_connections_on_image(image_path, path, node_positions,text,text2) 对上述代码进行解释

上述代码是一个名为`find_shortest_path`的函数,它执行以下操作: 1. `start = start_combobox.get()`: 获取起点下拉选择框中的选定值,并将其赋值给变量`start`。 2. `end = end_combobox.get()`: 获取终点下拉选择框中的选定值,并将其赋值给变量`end`。 3. `path, distance = dijkstra_shortest_path(graph, start, end)`: 调用`dijkstra_shortest_path`函数来计算起点到终点的最短路径和距离。它接受图对象`graph`、起点和终点作为参数,并返回最短路径和距离。这些值分别赋给了变量`path`和`distance`。 4. `print("最短路径:", path)`: 打印最短路径。 5. `print("最短距离:", distance)`: 打印最短距离。 6. `visualize_graph(graph, path)`: 调用`visualize_graph`函数来可视化图形和最短路径。它接受图对象和最短路径作为参数。 7. `text = '最短距离'+str(distance)`: 创建一个字符串变量`text`,用于存储最短距离的文本信息。 8. `text2 = '最短路径:'+str(path)`: 创建一个字符串变量`text2`,用于存储最短路径的文本信息。 9. `plot_connections_on_image(image_path, path, node_positions,text,text2)`: 调用`plot_connections_on_image`函数来在图像上绘制连接和文本信息。它接受图像路径、最短路径、节点位置、文本信息作为参数。 这段代码的功能是计算最短路径并输出结果,然后将最短路径可视化并在图像上显示最短距离和路径的文本信息。

def find_shortest_path(points): import itertools shortest_path = None shortest_length = float('inf') for path in itertools.permutations(points): length = calculate_path_length(path) if length < shortest_length: shortest_path = path shortest_length = length return shortest_path, shortest_length请问这段代码是什么功能呢

这段代码实现了一个函数 `find_shortest_path`,它接受一个包含多个坐标点的列表 `points`,并返回其中所有点的排列中,距离最短的路径和对应的距离。其中,距离由 `calculate_path_length` 函数计算得出,而路径则是通过 `itertools.permutations` 函数生成所有排列,并在遍历过程中不断更新最短路径和距离得出的。

相关推荐

class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码

获得各站点间最短距离 def dijkstra(graph, start, end): # 初始化距离矩阵和路径矩阵 n = len(graph) dist = [sys.maxsize] * n dist[start] = 0 path = [-1] * n visited = set() # 找到起点到每个点的最短距离 while len(visited) < n: # 选择当前未访问的距离最小的节点 u = min(set(range(n)) - visited, key=dist.getitem) visited.add(u) # 更新当前节点的邻居节点的距离 for v in range(n): if graph[u][v] != 0 and v not in visited: alt = dist[u] + graph[u][v] if alt < dist[v]: dist[v] = alt path[v] = u # 构造最短路径 shortest_path = [] u = end while u != start: shortest_path.append(u) u = path[u] shortest_path.append(start) return dist[end], shortest_path[::-1] print(len(labels)) position = [] for i in range(k): lei = [] for j in range(len(labels)): if(i==labels[j]): lei.append(j) position.append(lei) graph = distance.tolist() sum_k_short_path_ideal = [] sum_k_short_path = [] for x in range(k): most_short_path_ideal = [] most_short_path = np.zeros((len(position[x]) ,len(position[x]))) for i in range((len(position[x]))): pt = [] for j in range((len(position[x]))): dist, path = dijkstra(graph, position[x][i], position[x][j]) most_short_path[i, j] = dist most_short_path[j, i] = dist pt.append(path) # print(f"Distance from node {0} to node {7}: {dist}") # print(i,f"Shortest path: {path}") most_short_path_ideal.append(pt) #print(most_short_path) sum_k_short_path_ideal.append(most_short_path_ideal) sum_k_short_path.append(most_short_path) #print(x+1,"-->",(len(most_short_path_ideal),len(most_short_path_ideal[0]))) Sum_path = 0 for x in range(k): most_short_path = sum_k_short_path[x] most_short_path_ideal = sum_k_short_path_ideal[x] 用Step步骤一步一步介绍一下这是什么意思

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩