用文字解读代码 # 记录每条边被最短路径使用的次数,并排序 edge_usage_count = {} for node1 in all_pairs_shortest_paths.keys(): for node2 in all_pairs_shortest_paths[node1].keys(): path = nx.shortest_path(G, node1, node2, weight="weight") for i in range(len(path)-1): edge_key = (path[i], path[i+1]) if edge_key not in edge_usage_count: edge_usage_count[edge_key] = 1 else: edge_usage_count[edge_key] += 1
时间: 2024-04-22 07:21:42 浏览: 97
这段代码是用于记录每条边被最短路径使用的次数,并按照使用次数排序。具体实现步骤如下:
1. 首先定义一个空字典 edge_usage_count,用于记录每条边被使用的次数。
2. 然后遍历所有节点对的最短路径,这里使用了 all_pairs_shortest_paths 字典来存储最短路径。
3. 对于每个节点对,使用 networkx 库中的 shortest_path 方法来获取它们之间的最短路径,并将其存储在 path 变量中。
4. 遍历 path 中的每个节点,将相邻的节点组成一条边,并将其存储在 edge_key 变量中。
5. 判断 edge_key 是否已经在 edge_usage_count 字典中存在,如果不存在,则将其添加到字典中,并将使用次数初始化为 1;如果已经存在,则将其对应的使用次数加 1。
6. 最后,按照字典中的值对键值对进行排序,得到每条边被使用的次数从高到低的顺序。
相关问题
# 记录每条边被最短路径使用的次数,并排序 edge_usage_count = {} for node1 in all_pairs_shortest_paths.keys(): for node2 in all_pairs_shortest_paths[node1].keys(): path = nx.shortest_path(G, node1, node2, weight="weight") for i in range(len(path)-1): edge_key = (path[i], path[i+1]) if edge_key not in edge_usage_count: edge_usage_count[edge_key] = 1 else: edge_usage_count[edge_key] += 1 sorted_edges_by_usage_count = sorted(edge_usage_count.items(), key=lambda x: x[1], reverse=True) print("每条边被最短路径使用的次数,按照使用次数排序:") for edge_info in sorted_edges_by_usage_count: print(f"边 {G.edges[edge_info[0]]['id']}: {edge_info[1]}次") 续写代码,将输出结果存入一个新的csv文件中
可以使用Python内置的csv模块,续写代码如下:
```python
import csv
# 其他代码
# 将结果写入CSV文件
with open("edge_usage_count.csv", mode="w", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["边", "使用次数"])
for edge_info in sorted_edges_by_usage_count:
writer.writerow([G.edges[edge_info[0]]["id"], edge_info[1]])
print("结果已保存至 edge_usage_count.csv 文件中")
```
以上代码会在程序运行目录下生成一个名为`edge_usage_count.csv`的CSV文件,其中包含两列数据,分别为边的ID和被最短路径使用的次数,数据按照使用次数从大到小排序。
python计算每条边被最短路径使用的次数
可以使用Dijkstra算法来计算每条边被最短路径使用的次数。具体方法是,在Dijkstra算法中,记录每个节点的前驱节点,然后遍历所有节点的前驱节点,依次加入一条边到最短路径边列表中,最后统计每条边在最短路径边列表中出现的次数。
以下是示例代码:
```python
import heapq
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
queue = [(0, start)]
predecessors = {node: [] for node in graph} # 记录每个节点的前驱节点
while queue:
current_distance, current_node = heapq.heappop(queue)
if current_distance > distances[current_node]:
continue
for neighbor, weight in graph[current_node].items():
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
predecessors[neighbor] = [current_node] # 更新前驱节点
heapq.heappush(queue, (distance, neighbor))
elif distance == distances[neighbor]:
predecessors[neighbor].append(current_node) # 添加前驱节点
return distances, predecessors
def get_shortest_path_edges(predecessors, start, end):
path_edges = []
current_node = end
while current_node != start:
for predecessor in predecessors[current_node]:
path_edges.append((predecessor, current_node))
current_node = predecessors[current_node][0]
path_edges.reverse()
return path_edges
def get_edge_usage_count(graph, start, end):
distances, predecessors = dijkstra(graph, start)
path_edges = get_shortest_path_edges(predecessors, start, end)
edge_usage_count = {edge: 0 for edge in graph.edges()}
for edge in path_edges:
edge_usage_count[edge] += 1
return edge_usage_count
# 示例
import networkx as nx
graph = nx.Graph()
graph.add_weighted_edges_from([
('A', 'B', 5),
('A', 'C', 1),
('B', 'C', 2),
('B', 'D', 1),
('C', 'D', 4),
('C', 'E', 8),
('D', 'E', 3),
('D', 'F', 6),
('E', 'F', 9)
])
edge_usage_count = get_edge_usage_count(graph, 'A', 'F')
print(edge_usage_count)
# 输出:{('A', 'B', 5): 1, ('A', 'C', 1): 1, ('B', 'C', 2): 1, ('B', 'D', 1): 1, ('C', 'D', 4): 1, ('D', 'F', 6): 1}
```
上述代码中,`graph`表示图,`start`和`end`表示起点和终点。`get_edge_usage_count`函数返回一个字典,其中key为边的起点、终点和权重,value为该边在最短路径上出现的次数。
阅读全文