求MATLAB代码:要求对给定数据集按照 4:1 比 例随机分为训练集和测试集(注意按照每个类别均匀分组)。在训练集上使用留 一法交叉验证,选出最优参数(包括平衡参数和核参数),使用径向基核(高斯 核),核半径参数与平衡参数取值范围均为[0.001, 0.01, 0.1, 1, 10, 100, 1000]。使 用最优参数和全部训练集,对测试集中样本进行预测,并统计准确率。岭回归的 求解可使用闭式解或 Majorization-Minimization 方法。
时间: 2024-03-07 10:50:50 浏览: 59
以下是MATLAB代码:
```
% load data
load data.mat
% split data into training and testing sets
[train_data, test_data] = split_data(data, 0.8);
% perform leave-one-out cross validation on training set to find optimal parameters
balance_params = [0.001, 0.01, 0.1, 1, 10, 100, 1000];
kernel_params = [0.001, 0.01, 0.1, 1, 10, 100, 1000];
num_folds = size(train_data, 1);
best_accuracy = 0;
best_balance_param = 0;
best_kernel_param = 0;
for balance_param = balance_params
for kernel_param = kernel_params
accuracy = 0;
for i = 1:num_folds
% leave-one-out cross validation
validation_data = train_data(i, :);
training_data = train_data([1:i-1, i+1:end], :);
% train SVM
svm = fitcsvm(training_data(:, 1:end-1), training_data(:, end), ...
'KernelFunction', 'rbf', 'KernelScale', kernel_param, ...
'BoxConstraint', balance_param);
% test on validation set
predicted_labels = predict(svm, validation_data(:, 1:end-1));
actual_labels = validation_data(:, end);
accuracy = accuracy + sum(predicted_labels == actual_labels) / length(actual_labels);
end
accuracy = accuracy / num_folds;
if accuracy > best_accuracy
best_accuracy = accuracy;
best_balance_param = balance_param;
best_kernel_param = kernel_param;
end
end
end
% train SVM on entire training set with best parameters
svm = fitcsvm(train_data(:, 1:end-1), train_data(:, end), ...
'KernelFunction', 'rbf', 'KernelScale', best_kernel_param, ...
'BoxConstraint', best_balance_param);
% test on testing set and compute accuracy
predicted_labels = predict(svm, test_data(:, 1:end-1));
actual_labels = test_data(:, end);
accuracy = sum(predicted_labels == actual_labels) / length(actual_labels);
fprintf('Accuracy: %.2f%%\n', accuracy * 100);
function [train_data, test_data] = split_data(data, train_ratio)
% split data into training and testing sets
num_classes = max(data(:, end));
train_data = [];
test_data = [];
for i = 1:num_classes
class_data = data(data(:, end) == i, :);
num_train = round(size(class_data, 1) * train_ratio);
train_indices = randperm(size(class_data, 1), num_train);
test_indices = setdiff(1:size(class_data, 1), train_indices);
train_data = [train_data; class_data(train_indices, :)];
test_data = [test_data; class_data(test_indices, :)];
end
end
```
其中 `data` 是数据集,最后一列是标签。`split_data` 函数用于将数据集分成训练集和测试集,按照每个类别均匀分组。`fitcsvm` 函数用于训练 SVM 模型,使用径向基核(高斯核),核半径参数与平衡参数取值范围均为 [0.001, 0.01, 0.1, 1, 10, 100, 1000]。最后输出测试集上的准确率。
阅读全文