kmp算法与bf算法代码
时间: 2024-12-01 13:12:49 浏览: 25
KMP算法(Knuth-Morris-Pratt 算法)是一种字符串匹配算法,用于在一个主串中查找是否存在给定的模式串。它的核心思想是在遇到不匹配字符时,利用已经计算好的部分匹配表(也叫失配函数或前缀表)跳过多余的比较,提高搜索效率。下面是KMP算法的基本伪代码:
```python
function compute_lps(pattern):
lps = [0] * len(pattern)
j = 0
for i in range(1, len(pattern)):
if pattern[i] == pattern[j]:
j += 1
lps[i] = j
else:
while j > 0 and pattern[i] != pattern[j]:
j = lps[j - 1]
if pattern[i] == pattern[j]:
j += 1
lps[i] = j
return lps
function knuth_morris_pratt(text, pattern):
lps = compute_lps(pattern)
i = j = 0
while i < len(text) and j < len(pattern):
if text[i] == pattern[j]:
i += 1
j += 1
else:
if j > 0:
j = lps[j - 1]
else:
i += 1
return j == len(pattern)
```
BF(Boyer-Moore 搜索算法)则是一个更高效的字符串搜索算法,它结合了坏字符规则和好后缀规则。坏字符规则是基于最后一个不匹配字符的位置来移动;好后缀规则则是当遇到不匹配时,根据最长公共前后缀原则跳到模式串的某个位置继续搜索。BF算法通常比KMP更快,尤其是在文本很大而模式串中有很多重复的情况下。
以下是BF算法的简单Python版本:
```python
def bad_char_rule(pattern, text, index):
m = len(pattern)
t = len(text)
while index + m <= t and text[index + m - 1] != pattern[m - 1]:
index += 1
return index
def good_suffix_rule(pattern, text, index):
skip = 0
for j in reversed(range(len(pattern))):
while index >= skip + j and text[index - j] != pattern[j]:
skip = max(skip, len(pattern) - j - 1)
if text[index - j] == pattern[j]:
skip = j
return index + skip
def boyer_moore_search(pattern, text):
index = -1
while True:
index = bad_char_rule(pattern, text, index + 1) or (index + 1)
if not index:
return True
index = good_suffix_rule(pattern, text, index)
return False
```
阅读全文