def onehot_to_label(y_onehot):

时间: 2023-04-03 14:03:49 浏览: 72
这个问题是关于编程的,我可以回答。onehot_to_label 函数是将 one-hot 编码的标签转换为普通的标签。具体实现可以使用 argmax 函数来找到最大值的索引,然后将该索引作为标签返回。
相关问题

解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test

这段代码定义了一个函数`cv_model`,用于进行交叉验证和模型训练。函数的输入包括分类器`clf`,训练数据`train_x`和`train_y`,测试数据`test_x`,以及分类器名称`clf_name`。函数的输出为测试数据的预测结果。具体的实现步骤如下: 1. 将训练数据分为5折,设置随机种子为2021。 2. 初始化`test`数组,用于存储每一折的测试数据预测结果。 3. 使用`OneHotEncoder`进行标签编码,将分类器输出的标签转换为one-hot编码。 4. 针对每一折的训练数据和验证数据,使用指定的分类器进行模型训练。如果分类器名称为"lgb",则使用LightGBM进行训练。在LightGBM的训练过程中,使用了早停策略和交叉验证,以避免过拟合和提高模型的泛化性能。训练完成后,对验证数据进行预测,并将预测结果存储在`val_pred`中。同时,对测试数据进行预测,并将预测结果存储在`test_pred`中。 5. 将`val_y`和`val_pred`作为输入,调用`abs_sum`函数计算模型的评价指标。将评价指标存储在`cv_scores`中,并输出评价指标的值。 6. 将每一折的测试数据预测结果累加到`test`数组中。 7. 计算所有折的评价指标的平均值和标准差,并输出结果。 8. 将`test`数组除以折数,得到测试数据的平均预测结果,并将其作为函数的输出返回。

def plot_confuse(model, x_val, y_val): predictions = model.predict_classes(x_val) truelabel = y_val.argmax(axis=-1) # 将one-hot转化为label conf_mat = confusion_matrix(y_true=truelabel, y_pred=predictions) plt.figure() plot_confusion_matrix(conf_mat, range(np.max(truelabel) + 1))

这段代码看起来是在使用混淆矩阵(confusion matrix)对模型的预测结果进行分析。其中,model是要分析的模型,x_val和y_val是用于分析的验证数据集。 在这段代码中,首先使用model的predict_classes()方法对x_val进行预测,得到预测结果predictions。然后,将y_val从one-hot编码转化为标签形式,并保存在truelabel中。接下来,使用sklearn库中的confusion_matrix()函数计算混淆矩阵,并将其保存在conf_mat中。最后,使用自定义的plot_confusion_matrix()函数绘制混淆矩阵图。 需要注意的是,plot_confusion_matrix()函数不是Python内置函数,需要在代码中定义该函数。你可以参考以下的代码实现: ```python import itertools import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import confusion_matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ 绘制混淆矩阵图 """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') ``` 这个函数就是用来绘制混淆矩阵图的,它的输入参数包括混淆矩阵cm、类别列表classes、是否进行归一化normalize、图像标题title、颜色映射cmap。需要注意的是,classes应该是类别的列表,而不是类别标签的数组。

相关推荐

column_name = ["label"] column_name.extend(["pixel%d" % i for i in range(32 * 32 * 3)]) dataset = pd.read_csv('cifar_train.csv') #dataset = pd.read_csv('heart.csv') #dataset = pd.read_csv('iris.csuv') #sns.pairplot(dataset.iloc[:, 1:6]) #plt.show() #print(dataset.head()) #shuffled_data = dataset.sample(frac=1) #dataset=shuffled_data #index=[0,1,2,3,4,5,6,7,8,9,10,11,12,13] #dataset.columns=index dataset2=pd.read_csv('test.csv') #X = dataset.iloc[:, :30].values #y = dataset.iloc[:,30].values mm = MinMaxScaler() from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) X_train =dataset.iloc[:,1:].values X_test = dataset2.iloc[:,1:].values y_train = dataset.iloc[:,0].values y_test = dataset2.iloc[:,0].values print(y_train) # 进行独热编码 def one_hot_encode_object_array(arr): # 去重获取全部的类别 uniques, ids = np.unique(arr, return_inverse=True) # 返回热编码的结果 return tf.keras.utils.to_categorical(ids, len(uniques)) #train_y_ohe=y_train #test_y_ohe=y_test # 训练集热编码 train_y_ohe = one_hot_encode_object_array(y_train) # 测试集热编码 test_y_ohe = one_hot_encode_object_array(y_test) # 利用sequential方式构建模型 from keras import backend as K def swish(x, beta=1.0): return x * K.sigmoid(beta * x) from keras import regularizers model = tf.keras.models.Sequential([ # 隐藏层1,激活函数是relu,输入大小有input_shape指定 tf.keras.layers.InputLayer(input_shape=(3072,)), # lambda(hanshu, output_shape=None, mask=None, arguments=None), #tf.keras.layers.Lambda(hanshu, output_shape=None, mask=None, arguments=None), tf.keras.layers.Dense(500, activation="relu"), # 隐藏层2,激活函数是relu tf.keras.layers.Dense(500, activation="relu"), # 输出层 tf.keras.layers.Dense(10, activation="softmax") ])

from scipy.io import loadmat import numpy as np import math import matplotlib.pyplot as plt import sys, os import pickle from mnist import load_mnist # 函数定义和画图 # 例子:定义step函数以及画图 def step_function(x): y=x>0 return np.array(y,int) def show_step(x): y=step_function(x) plt.plot(x,y,label='step function') plt.legend(loc="best") x = np.arange(-5.0, 5.0, 0.1) show_step(x) ''' 1. 根据阶跃函数step_function的例子,写出sigmoide和Relu函数的定义并画图。 ''' ''' 2. 定义softmax函数,根据输入x=[0.3,2.9,4.0],给出softmax函数的输出,并对输出结果求和。 ''' #获取mnist数据 def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test #c初始化网络结构,network是字典,保存每一层网络参数W和b def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network #字典 ''' 3. 调用get_data和init_network函数, 输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层) ''' ''' 4. 定义predict函数,进行手写数字的识别。 识别方法: 假设输入手写数字图像为x,维数为784(28*28的图像拉成一维向量), 第一层网络权值为W1(维数784, 50),b1(维数为50),第一层网络输出:z1=sigmoid(x*W1+b2)。 第二层网络权值为W2(维数50, 100),b2(维数为100),第二层网络输出:z2=sigmoid(z1*W2+b2)。 第三层网络权值为W3(维数100, 10),b3(维数为10),第三层网络输出(即识别结果):p=softmax(z2*W3+b3), p是向量,维数为10(类别数),表示图像x属于每一个类别的概率, 例如p=[0, 0, 0.95, 0.05, 0, 0, 0, 0, 0, 0],表示x属于第三类(数字2)的概率为0.95, 属于第四类(数字3)的概率为0.05,属于其他类别的概率为0. 由于x属于第三类的概率最大,因此,x属于第三类。 ''' ''' 5. 进行手写数字识别分类准确度的计算(总体分类精度),输出分类准确度。 例如测试数据数量为100,其中正确分类的数量为92,那么分类精度=92/100=0.92。 '''

3.获取数据并初始化网络(提供代码),调用get_data和init_network函数,并输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层) #获取mnist数据 def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test #初始化网络结构,network是字典,保存每一层网络参数W和b def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network 4.定义predict函数,进行手写数字的识别。 识别方法: 假设输入手写数字图像为x,维数为784(28*28的图像拉成一维向量),第一层网络权值为W1(维数784, 50),b1(维数为50),第一层网络输出:z1=sigmoid(x*W1+b2)。第二层网络权值为W2(维数50, 100),b2(维数为100),第二层网络输出:z2=sigmoid(z1*W2+b2)。第三层网络权值为W3(维数100, 10),b3(维数为10),第三层网络输出(即识别结果):p=softmax(z2*W3+b3),p是向量,维数为10(类别数),表示图像x属于每一个类别的概率,例如p=[0, 0, 0.95, 0.05, 0, 0, 0, 0, 0, 0],表示x属于第三类(数字2)的概率为0.95,属于第四类(数字3)的概率为0.05,属于其他类别的概率为0. 由于x属于第三类的概率最大,因此,x属于第三类。 5.进行手写数字识别分类准确度的计算(总体分类精度),输出分类准确度。 例如测试数据数量为100,其中正确分类的数量为92,那么分类精度=92/100=0.92。

import os import pickle import cv2 import matplotlib.pyplot as plt import numpy as np from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from keras.models import Sequential from keras.optimizers import adam_v2 from keras_preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, OneHotEncoder, LabelBinarizer def load_data(filename=r'/root/autodl-tmp/RML2016.10b.dat'): with open(r'/root/autodl-tmp/RML2016.10b.dat', 'rb') as p_f: Xd = pickle.load(p_f, encoding="latin-1") # 提取频谱图数据和标签 spectrograms = [] labels = [] train_idx = [] val_idx = [] test_idx = [] np.random.seed(2016) a = 0 for (mod, snr) in Xd: X_mod_snr = Xd[(mod, snr)] for i in range(X_mod_snr.shape[0]): data = X_mod_snr[i, 0] frequency_spectrum = np.fft.fft(data) power_spectrum = np.abs(frequency_spectrum) ** 2 spectrograms.append(power_spectrum) labels.append(mod) train_idx += list(np.random.choice(range(a * 6000, (a + 1) * 6000), size=3600, replace=False)) val_idx += list(np.random.choice(list(set(range(a * 6000, (a + 1) * 6000)) - set(train_idx)), size=1200, replace=False)) a += 1 # 数据预处理 # 1. 将频谱图的数值范围调整到0到1之间 spectrograms_normalized = spectrograms / np.max(spectrograms) # 2. 对标签进行独热编码 label_binarizer = LabelBinarizer() labels_encoded= label_binarizer.fit_transform(labels) # transfor the label form to one-hot # 3. 划分训练集、验证集和测试集 # X_train, X_temp, y_train, y_temp = train_test_split(spectrograms_normalized, labels_encoded, test_size=0.15, random_state=42) # X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) spectrogramss = np.array(spectrograms_normalized) print(spectrogramss.shape) labels = np.array(labels) X = np.vstack(spectrogramss) n_examples = X.shape[0] test_idx = list(set(range(0, n_examples)) - set(train_idx) - set(val_idx)) np.random.shuffle(train_idx) np.random.shuffle(val_idx) np.random.shuffle(test_idx) X_train = X[train_idx] X_val = X[val_idx] X_test = X[test_idx] print(X_train.shape) print(X_val.shape) print(X_test.shape) y_train = labels[train_idx] y_val = labels[val_idx] y_test = labels[test_idx] print(y_train.shape) print(y_val.shape) print(y_test.shape) # X_train = np.expand_dims(X_train,axis=-1) # X_test = np.expand_dims(X_test,axis=-1) # print(X_train.shape) return (mod, snr), (X_train, y_train), (X_val, y_val), (X_test, y_test) 这是我的数据预处理代码

2.定义softmax函数,根据输入x=[0.3,2.9,4.0],给出softmax函数的输出,并对输出结果求和。 3.获取数据并初始化网络(提供代码),调用get_data和init_network函数,并输出x_train, t_train,x_test,t_test,以及network中每层参数的shape(一共三层) #获取mnist数据 def get_data(): (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False) return x_train,t_train,x_test, t_test #初始化网络结构,network是字典,保存每一层网络参数W和b def init_network(): with open("sample_weight.pkl", 'rb') as f: network = pickle.load(f) return network 4.定义predict函数,进行手写数字的识别。 识别方法: 假设输入手写数字图像为x,维数为784(28*28的图像拉成一维向量),第一层网络权值为W1(维数784, 50),b1(维数为50),第一层网络输出:z1=sigmoid(x*W1+b2)。第二层网络权值为W2(维数50, 100),b2(维数为100),第二层网络输出:z2=sigmoid(z1*W2+b2)。第三层网络权值为W3(维数100, 10),b3(维数为10),第三层网络输出(即识别结果):p=softmax(z2*W3+b3),p是向量,维数为10(类别数),表示图像x属于每一个类别的概率,例如p=[0, 0, 0.95, 0.05, 0, 0, 0, 0, 0, 0],表示x属于第三类(数字2)的概率为0.95,属于第四类(数字3)的概率为0.05,属于其他类别的概率为0. 由于x属于第三类的概率最大,因此,x属于第三类。 5.进行手写数字识别分类准确度的计算(总体分类精度),输出分类准确度。 例如测试数据数量为100,其中正确分类的数量为92,那么分类精度=92/100=0.92。

最新推荐

recommend-type

Java 员工管理系统项目源代码(可做毕设项目参考)

Java 员工管理系统项目是一个基于 Java 编程语言开发的桌面应用程序,旨在管理员工的信息、津贴、扣除和薪资等功能。该系统通过提供结构和工具集,使公司能够有效地管理其员工数据和薪资流程。 系统特点 员工管理:管理员可以添加、查看和更新员工信息。 津贴管理:管理员可以添加和管理员工的津贴信息。 扣除管理:管理员可以添加和管理员工的扣除信息。 搜索功能:可以通过员工 ID 搜索员工详细信息。 更新薪资:管理员可以更新员工的薪资信息。 支付管理:处理员工的支付和生成支付记录。 模块介绍 员工管理模块:管理员可以添加、查看和更新员工信息,包括员工 ID、名字、姓氏、年龄、职位和薪资等。 津贴管理模块:管理员可以添加和管理员工的津贴信息,如医疗津贴、奖金和其他津贴。 扣除管理模块:管理员可以添加和管理员工的扣除信息,如税收和其他扣除。 搜索功能模块:可以通过员工 ID 搜索员工详细信息。 更新薪资模块:管理员可以更新员工的薪资信息。 支付管理模块:处理员工的支付和生成支付记录 可以作为毕业设计项目参考
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差

![MATLAB正态分布协方差分析:揭示正态分布变量之间的协方差](https://site.cdn.mengte.online/official/2021/11/20211128213137293.png) # 1. 正态分布概述 正态分布,又称高斯分布,是统计学中最重要的连续概率分布之一。它广泛应用于自然科学、社会科学和工程领域。 正态分布的概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * exp(-(x - μ)² / (2σ²)) ``` 其中: - μ:正态分布的均值 - σ:正态分布的标准差 - π:圆周率 正态分布具有以下特性: - 对称性:
recommend-type

我正在开发一款个人碳足迹计算app,如何撰写其需求分析文档,请给我一个范例

为了更全面、清晰地定义个人碳足迹计算app的需求,需求分析文档应该包含以下内容: 1.项目简介:对该app项目的概述及目标进行说明。 2.用户分析:包括目标用户群、用户需求、行为等。 3.功能需求:对app的基本功能进行定义,如用户登录、数据录入、数据统计等。 4.非功能需求:对使用app的性能和质量等进行定义,如界面设计、数据安全、可扩展性等。 5.运行环境:包括app的开发环境和使用环境。 下面是一个范例: 需求分析文档 1. 项目简介 该app项目旨在为用户提供一款方便、易用、可定制的个人碳足迹计算平台,以促进环保和可持续性发展。 2. 用户分析 目标用户群:全球关
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB正态分布相关性分析:探索正态分布变量之间的关联

![MATLAB正态分布相关性分析:探索正态分布变量之间的关联](https://img-blog.csdnimg.cn/bd5a45b8a6e94357b7af2409fa3131ab.png) # 1. MATLAB中正态分布的理论基础 正态分布,又称高斯分布,是一种常见的概率分布,其概率密度函数为: ``` f(x) = (1 / (σ√(2π))) * e^(-(x-μ)² / (2σ²)) ``` 其中,μ表示正态分布的均值,σ表示标准差。正态分布具有以下特点: - **对称性:**正态分布的概率密度函数关于均值μ对称。 - **钟形曲线:**正态分布的概率密度函数呈钟形曲线
recommend-type

我现在需要学习基于opencv和mediapipe并且是python的手势识别,我该如何系统的学习呢

你可以先了解一下opencv和mediapipe的基本使用方法和常见功能,然后学习手势识别的算法和方法。具体学习的过程可以包括以下步骤: 1. 学习opencv的基本操作,例如读取、保存、处理图像的方法,以及如何进行图像的降噪、二值化、边缘检测等操作。 2. 学习mediapipe的使用方法,了解如何使用它进行姿势估计和手部检测。 3. 学习手势识别的算法和方法,了解如何识别手部的姿势和手势动作,并进行分类和识别。 4. 进行实践,尝试编写基于opencv和mediapipe的手势识别代码,对不同类型的手势进行识别和分类。 5. 继续学习和研究,扩展自己的知识和技能,探索更深入和复杂
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。