#define READ_DRV1() gpio_input_bit_get(DRIVER1_R_GPIO_Port, DRIVER1_R_Pin) #define READ_DRV2() gpio_input_bit_get(DRIVER2_R_GPIO_Port, DRIVER2_R_Pin) #define READ_DRV3() gpio_input_bit_get(DRIVER3_R_GPIO_Port, DRIVER3_R_Pin) #define READ_DRV4() gpio_input_bit_get(DRIVER4_R_GPIO_Port, DRIVER4_R_Pin) #define READ_DRV5() gpio_input_bit_get(DRIVER5_R_GPIO_Port, DRIVER5_R_Pin) #define READ_DRV6() gpio_input_bit_get(DRIVER6_R_GPIO_Port, DRIVER6_R_Pin) #define READ_DRV7() gpio_input_bit_get(DRIVER7_R_GPIO_Port, DRIVER7_R_Pin) #define READ_DRV8() gpio_input_bit_get(DRIVER8_R_GPIO_Port, DRIVER8_R_Pin) #define READ_DRV9() gpio_input_bit_get(DRIVER9_R_GPIO_Port, DRIVER9_R_Pin) #define READ_DRV10() gpio_input_bit_get(DRIVER10_R_GPIO_Port, DRIVER10_R_Pin) #define READ_DRV11() gpio_input_bit_get(DRIVER11_R_GPIO_Port, DRIVER11_R_Pin) #define READ_DRV12() gpio_input_bit_get(DRIVER12_R_GPIO_Port, DRIVER12_R_Pin) READ_DRV如何使用for循环

时间: 2023-07-29 07:13:40 浏览: 48
可以使用for循环和宏定义来简化代码,如下所示: ``` #define READ_DRV(i) gpio_input_bit_get(DRIVER##i##_R_GPIO_Port, DRIVER##i##_R_Pin) for (int i = 1; i <= 12; i++) { int drv = READ_DRV(i); // 处理drv的值 } ``` 在这个例子中,我们定义了一个宏定义`READ_DRV(i)`,用于根据输入的参数i读取对应的GPIO引脚状态。在for循环中,我们循环遍历12个引脚,依次读取它们的状态并进行处理。 需要注意的是,宏定义中使用了双井号(##)运算符,用于将参数i与固定的字符串DRIVER进行拼接,形成对应的GPIO引脚的名称。这样,我们就可以使用一个宏定义来简化对多个GPIO引脚的读取操作。
相关问题

这段代码的含义(#include "stm32f10x.h" // Device header #include "stm32f10x_gpio.h" #define PWM_PERIOD 1000 // PWM波形周期,单位us void TIM_Configuration(void); void GPIO_Configuration(void); int main(void) { GPIO_Configuration(); TIM_Configuration(); while (1) { // 不断更新PWM占空比以控制电机转速 TIM_SetCompare2(TIM1, 500); // 设置占空比为50% delay_ms(1000); TIM_SetCompare2(TIM1, 750); // 设置占空比为75% delay_ms(1000); TIM_SetCompare2(TIM1, 250); // 设置占空比为25% delay_ms(1000); } } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE); // PA8 -> TIM1_CH1 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); // PB13 -> TIM1_CH2 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB14 -> TIM1_CH3 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB15 -> DRV8313_EN GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); // PB12 -> DRV8313_FAULT GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); TIM_TimeBaseStructure.TIM_Period = PWM_PERIOD - 1; TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 72MHz时钟,分频为72,计数频率为1MHz TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); // PWM模式1,TIM1_CH2作为PWM输出 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init(TIM1, &TIM_OCInitStructure); TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable); // 启用死区时间,设置死区时间为1us TIM_BDTRInitStructure.TIM_DeadTime = 10; TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); // 启动TIM1 TIM_Cmd(TIM1, ENABLE); // 使能DRV8313芯片 GPIO_SetBits(GPIOB, GPIO_Pin_15); })

这段代码是一段嵌入式系统的代码,主要用于控制电机的转速。使用了 STM32F10x 系列的芯片,通过 PWM 波形来控制电机的占空比,从而控制电机的转速。代码中使用了 GPIO 和 TIM 两个库来实现对芯片的控制。其中 GPIO_Configuration 函数用于配置芯片的 GPIO 口,TIM_Configuration 函数用于配置芯片的定时器 TIM。在 main 函数中,通过不断设置 PWM 占空比来控制电机的转速。同时,在代码中还使用了 DRV8313 芯片来控制电机的启停。

#include <rtthread.h> #include <drv_lcd.h> #include <board.h> #include <rthw.h> #include <rtdevice.h> #include <drv_gpio.h> #include <rtdbg.h> 请用以上头文件完成我的要求,我的要求是请使用RT-Thread实时操作系统编写的C语言程序,并利用了几个驱动程序,如DRV_LCD和DRV_GPIO,来控制LCD屏幕和GPIO引脚,实现一个俄罗斯方块的游戏,程序用多线程处理不同任务,此外使用邮箱在线程之间进行通信,并使用定时器以固定间隔更新游戏状态。最后控制RGB LED和蜂鸣器以向用户提供视觉和听觉反馈。

这是一个比较复杂的项目,需要一定的嵌入式开发经验。以下是一个简单的示例代码,仅供参考: ```c #include <rtthread.h> #include <drv_lcd.h> #include <board.h> #include <rthw.h> #include <rtdevice.h> #include <drv_gpio.h> #include <rtdbg.h> #define LCD_WIDTH 240 #define LCD_HEIGHT 320 #define BLOCK_SIZE 20 static rt_uint8_t block_colors[7][3] = { {255, 0, 0}, // 红色 {255, 165, 0}, // 橙色 {255, 255, 0}, // 黄色 {0, 128, 0}, // 绿色 {0, 0, 255}, // 蓝色 {75, 0, 130}, // 紫色 {128, 0, 128} // 粉色 }; static rt_uint8_t game_board[LCD_WIDTH / BLOCK_SIZE][LCD_HEIGHT / BLOCK_SIZE]; static rt_uint8_t cur_block[4][4]; static rt_uint8_t cur_block_color[3]; static rt_uint8_t cur_block_x, cur_block_y; static rt_uint8_t cur_block_rotate; static rt_uint8_t score; static rt_uint8_t game_over; static struct rt_mailbox game_mailbox; static struct rt_semaphore lcd_sem; static struct rt_semaphore block_sem; static rt_device_t lcd_dev; static rt_device_t gpio_dev; static void lcd_clear(rt_uint8_t color) { rt_uint8_t *lcd_buf; rt_uint32_t i, j; rt_sem_take(&lcd_sem, RT_WAITING_FOREVER); lcd_buf = rt_malloc(LCD_WIDTH * LCD_HEIGHT * 2); for (i = 0; i < LCD_WIDTH * LCD_HEIGHT; i++) { lcd_buf[i * 2] = color & 0xff; lcd_buf[i * 2 + 1] = (color >> 8) & 0xff; } rt_device_write(lcd_dev, 0, lcd_buf, LCD_WIDTH * LCD_HEIGHT * 2); rt_free(lcd_buf); rt_sem_release(&lcd_sem); } static void lcd_draw_block(rt_uint8_t x, rt_uint8_t y, rt_uint8_t color) { rt_uint8_t *lcd_buf; rt_uint32_t i, j; rt_sem_take(&lcd_sem, RT_WAITING_FOREVER); lcd_buf = rt_malloc(BLOCK_SIZE * BLOCK_SIZE * 2); for (i = 0; i < BLOCK_SIZE; i++) { for (j = 0; j < BLOCK_SIZE; j++) { if (i == 0 || i == BLOCK_SIZE - 1 || j == 0 || j == BLOCK_SIZE - 1) { lcd_buf[(i * BLOCK_SIZE + j) * 2] = 0xff; lcd_buf[(i * BLOCK_SIZE + j) * 2 + 1] = 0xff; } else { lcd_buf[(i * BLOCK_SIZE + j) * 2] = color & 0xff; lcd_buf[(i * BLOCK_SIZE + j) * 2 + 1] = (color >> 8) & 0xff; } } } rt_device_write(lcd_dev, (x + 1) * BLOCK_SIZE, (y + 1) * BLOCK_SIZE, lcd_buf, BLOCK_SIZE * BLOCK_SIZE * 2); rt_free(lcd_buf); rt_sem_release(&lcd_sem); } static void lcd_draw_board(void) { rt_uint8_t i, j; for (i = 0; i < LCD_WIDTH / BLOCK_SIZE; i++) { for (j = 0; j < LCD_HEIGHT / BLOCK_SIZE; j++) { if (game_board[i][j]) { lcd_draw_block(i, j, block_colors[game_board[i][j] - 1][0] << 16 | block_colors[game_board[i][j] - 1][1] << 8 | block_colors[game_board[i][j] - 1][2]); } else { lcd_draw_block(i, j, 0); } } } } static rt_err_t gpio_callback(rt_device_t dev, rt_size_t size) { rt_uint8_t key_value; rt_device_read(dev, 0, &key_value, 1); switch (key_value) { case 0x11: // 左键 rt_sem_release(&block_sem); break; case 0x21: // 右键 rt_sem_release(&block_sem); break; case 0x41: // 上键 rt_sem_release(&block_sem); break; case 0x81: // 下键 rt_sem_release(&block_sem); break; default: break; } return RT_EOK; } static void block_thread_entry(void *parameter) { rt_uint8_t i, j, k; rt_uint8_t next_block[4][4]; rt_uint8_t next_block_color[3]; rt_uint8_t next_block_rotate; rt_uint8_t next_block_x, next_block_y; rt_uint8_t is_game_over; while (1) { // 生成下一个方块 next_block_color[0] = block_colors[rt_tick_get() % 7][0]; next_block_color[1] = block_colors[rt_tick_get() % 7][1]; next_block_color[2] = block_colors[rt_tick_get() % 7][2]; next_block_rotate = rt_tick_get() % 4; next_block_x = (LCD_WIDTH / BLOCK_SIZE - 4) / 2; next_block_y = 0; switch (rt_tick_get() % 7) { case 0: // I next_block[0][0] = 0; next_block[0][1] = 0; next_block[0][2] = 0; next_block[0][3] = 0; next_block[1][0] = 1; next_block[1][1] = 1; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 1: // J next_block[0][0] = 0; next_block[0][1] = 1; next_block[0][2] = 0; next_block[0][3] = 0; next_block[1][0] = 0; next_block[1][1] = 1; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 2: // L next_block[0][0] = 0; next_block[0][1] = 0; next_block[0][2] = 0; next_block[0][3] = 1; next_block[1][0] = 0; next_block[1][1] = 1; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 3: // O next_block[0][0] = 0; next_block[0][1] = 0; next_block[0][2] = 1; next_block[0][3] = 1; next_block[1][0] = 0; next_block[1][1] = 0; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 4: // S next_block[0][0] = 0; next_block[0][1] = 0; next_block[0][2] = 1; next_block[0][3] = 1; next_block[1][0] = 0; next_block[1][1] = 1; next_block[1][2] = 1; next_block[1][3] = 0; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 5: // T next_block[0][0] = 0; next_block[0][1] = 1; next_block[0][2] = 0; next_block[0][3] = 0; next_block[1][0] = 0; next_block[1][1] = 1; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; case 6: // Z next_block[0][0] = 0; next_block[0][1] = 1; next_block[0][2] = 1; next_block[0][3] = 0; next_block[1][0] = 0; next_block[1][1] = 0; next_block[1][2] = 1; next_block[1][3] = 1; next_block[2][0] = 0; next_block[2][1] = 0; next_block[2][2] = 0; next_block[2][3] = 0; next_block[3][0] = 0; next_block[3][1] = 0; next_block[3][2] = 0; next_block[3][3] = 0; break; default: break; } is_game_over = 0; // 判断游戏是否结束 for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (next_block[i][j]) { if (game_board[next_block_x + i][next_block_y + j]) { is_game_over = 1; break; } } } if (is_game_over) { break; } } if (is_game_over) { game_over = 1; rt_kprintf("Game Over!\n"); break; } // 发送消息通知LCD线程绘制下一个方块 rt_memcpy(cur_block, next_block, sizeof(cur_block)); rt_memcpy(cur_block_color, next_block_color, sizeof(cur_block_color)); cur_block_x = next_block_x; cur_block_y = next_block_y; cur_block_rotate = next_block_rotate; rt_mb_send(&game_mailbox, (rt_uint32_t)1); // 等待信号量,接收操作指令 rt_sem_take(&block_sem, RT_WAITING_FOREVER); // 处理操作指令 switch (rt_current_thread()->event_set) { case 0x01: // 左移 if (cur_block_x > 0) { for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (cur_block[i][j]) { if (game_board[cur_block_x + i - 1][cur_block_y + j]) { goto out; } } } } cur_block_x--; rt_mb_send(&game_mailbox, (rt_uint32_t)1); } break; case 0x02: // 右移 if (cur_block_x < LCD_WIDTH / BLOCK_SIZE - 4) { for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (cur_block[i][j]) { if (game_board[cur_block_x + i + 1][cur_block_y + j]) { goto out; } } } } cur_block_x++; rt_mb_send(&game_mailbox, (rt_uint32_t)1); } break; case 0x04: // 旋转 for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { next_block[j][3 - i] = cur_block[i][j]; } } for (k = 0; k < cur_block_rotate; k++) { for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { cur_block[i][j] = next_block[i][j]; } } rt_memcpy(next_block, cur_block, sizeof(cur_block)); } for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (cur_block[i][j]) { if (game_board[cur_block_x + i][cur_block_y + j]) { goto out; } } } } rt_memcpy(cur_block, next_block, sizeof(cur_block)); rt_mb_send(&game_mailbox, (rt_uint32_t)1); break; case 0x08: // 下移 while (1) { for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (cur_block[i][j]) { if (game_board[cur_block_x + i][cur_block_y + j + 1]) { goto out; } } } } cur_block_y++; rt_mb_send(&game_mailbox, (rt_uint32_t)1); rt_thread_delay(100); } break; default: break; } out: // 将方块写入游戏区域 for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (cur_block[i][j]) { game_board[cur_block_x + i][cur_block_y + j] = cur_block[i][j]; } } } } } static void lcd_thread_entry(void *parameter) { rt_uint32_t i, j, k; rt_uint8_t lcd_buf[LCD_WIDTH * LCD_HEIGHT * 2]; //

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩