torchvision.transforms.RandomCrop((128,64),padding=4),
时间: 2023-03-24 10:04:03 浏览: 142
这个问题是关于 PyTorch 中的图像处理模块 torchvision.transforms 的一个函数调用,它会对输入的图像进行随机裁剪,裁剪后的大小为 (128, 64),同时在裁剪前会在图像周围填充 4 个像素点。
相关问题
torchvision.transforms.v2
torchvision.transforms.v2是一个Python库,它提供了一系列的数据预处理操作,可以用于对图像数据进行处理和转换。其中一些常见的预处理操作包括:
1. transforms.CenterCrop(size):将给定的图像进行中心切割,得到给定的size大小的图像。size可以是一个tuple,表示目标图像的高度和宽度;也可以是一个整数,表示切出来的图像是正方形。
2. transforms.RandomCrop(size, padding=0):随机选取图像的中心点位置进行切割。size可以是一个tuple,也可以是一个整数。
3. transforms.RandomHorizontalFlip():随机水平翻转给定的图像,概率为0.5,即有50%的概率进行翻转。
4. transforms.RandomSizedCrop(size, interpolation=2):先随机切割图像(尺寸不定),然后再将切割后的图像resize成给定的size大小。
5. transforms.Pad(padding, fill=0):将给定的图像的所有边用给定的填充值进行填充。padding表示要填充多少像素,fill表示用什么值进行填充。
6. transforms.Normalize(mean, std):使用给定的均值和标准差进行归一化操作。归一化公式为:channel = (channel - mean) / std。其中mean和std分别表示每个通道的均值和标准差。
以上是torchvision.transforms.v2库中的一些常见的预处理操作,可以根据需要选择合适的操作来对图像数据进行处理。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [torchvision.transforms](https://blog.csdn.net/qq_33254870/article/details/103364028)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [pytorch-nyuv2:PyTorch NYUv2数据集类](https://download.csdn.net/download/weixin_42100188/18378138)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
加载数据集并进行数据预处理 transform_train = transforms.Compose( [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) transform_test = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
这段代码用于加载数据集并进行数据预处理。让我逐行解读这些代码:
```python
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
- `transform_train` 是一个数据预处理的操作序列,使用 `transforms.Compose` 将多个预处理操作组合在一起。
- `transforms.RandomCrop(32, padding=4)` 对图像进行随机裁剪,裁剪的大小为32x32,并在周围填充4个像素。
- `transforms.RandomHorizontalFlip()` 对图像进行随机水平翻转。
- `transforms.ToTensor()` 将图像转换为张量(Tensor)形式。
- `transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])` 对图像进行标准化处理,通过减去均值和除以标准差来将像素值归一化。
```python
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
- `transform_test` 是用于测试集的数据预处理操作序列,与 `transform_train` 相似,但没有进行随机裁剪和翻转。
```python
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
```
- `trainset` 是使用 CIFAR10 数据集对象的训练集,通过传入参数 `root='./data'` 指定数据集的根目录,`train=True` 表示加载训练集数据,`download=True` 表示如果数据集不存在则下载数据集,`transform=transform_train` 表示对训练集应用之前定义的 `transform_train` 进行数据预处理。
- `trainloader` 是一个用于训练的数据加载器(DataLoader),通过传入参数 `trainset` 表示加载 `trainset` 数据集,`batch_size=128` 表示每次加载的批次大小为128,`shuffle=True` 表示每个 epoch 都会对数据进行洗牌以增加随机性,`num_workers=2` 表示使用2个线程来加载数据。
```python
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
```
- `testset` 是使用 CIFAR10 数据集对象的测试集,通过传入参数 `train=False` 表示加载测试集数据,其他参数的含义与训练集类似。
- `testloader` 是一个用于测试的数据加载器(DataLoader),通过传入参数 `testset` 表示加载 `testset` 数据集,其他参数的含义与训练集类似。
以上代码段加载了 CIFAR10 数据集,并对训练集和测试集进行了数据预处理,然后创建了对应的数据加载器,以便在训练和测试过程中使用。
阅读全文