vis = np.array(vis.cpu()).transpose((1,2,0))

时间: 2023-09-01 15:14:05 浏览: 44
vis = np.array(vis.cpu()).transpose((1,2,0))这一行代码是对numpy数组vis进行操作的,首先将vis从GPU内存中取出(cpu()),然后使用transpose函数将数组的维度进行转置,将原本的(1,2,0)顺序变为(2,0,1)。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch--深度学习神经网络中可视化工具Visdom的使用](https://blog.csdn.net/u014453898/article/details/103962286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
相关问题

def __getitem__(self, index): if self.split=='train': vis_path = self.filepath_vis[index] ir_path = self.filepath_ir[index] label_path = self.filepath_label[index] image_vis = np.array(Image.open(vis_path)) image_inf = cv2.imread(ir_path, 0) label = np.array(Image.open(label_path)) image_vis = ( np.asarray(Image.fromarray(image_vis), dtype=np.float32).transpose( (2, 0, 1) ) / 255.0 ) image_ir = np.asarray(Image.fromarray(image_inf), dtype=np.float32) / 255.0 image_ir = np.expand_dims(image_ir, axis=0) label = np.asarray(Image.fromarray(label), dtype=np.int64) name = self.filenames_vis[index] return ( torch.tensor(image_vis), torch.tensor(image_ir), torch.tensor(label), name, ) elif self.split=='val': vis_path = self.filepath_vis[index] ir_path = self.filepath_ir[index] image_vis = np.array(Image.open(vis_path)) image_inf = cv2.imread(ir_path, 0) image_vis = ( np.asarray(Image.fromarray(image_vis), dtype=np.float32).transpose( (2, 0, 1) ) / 255.0 ) image_ir = np.asarray(Image.fromarray(image_inf), dtype=np.float32) / 255.0 image_ir = np.expand_dims(image_ir, axis=0) name = self.filenames_vis[index] return ( torch.tensor(image_vis), torch.tensor(image_ir), name, )

这段代码定义了一个自定义数据集类(可能是用于图像分割任务),其中包含了getitem方法用于获取数据。 在getitem方法中,根据数据集的split属性判断是训练集还是验证集。如果是训练集,首先获取对应索引的可见光图像路径(vis_path)、红外图像路径(ir_path)和标签路径(label_path)。然后,使用PIL库的Image.open函数读取可见光图像和标签图像,并使用cv2.imread函数读取红外图像(以灰度图像形式)。接下来,对可见光图像和红外图像进行预处理:将可见光图像转为numpy数组,并将通道维度转置为(2, 0, 1),然后除以255.0进行归一化;将红外图像转为numpy数组,并除以255.0进行归一化,再使用np.expand_dims函数在通道维度上添加一个维度。最后,将标签图像转为numpy数组,并将数据类型设置为int64。 如果是验证集,只获取可见光图像路径(vis_path)和红外图像路径(ir_path),并进行和训练集相同的预处理操作。 最后,根据数据集的split属性,返回不同的数据组合。如果是训练集,返回可见光图像、红外图像、标签图像和名称;如果是验证集,返回可见光图像、红外图像和名称。 这个数据集类用于加载图像数据,并返回用于训练或验证的数据组合。

def make_numpy_grid(tensor_data, pad_value=0,padding=0): tensor_data = tensor_data.detach() vis = utils.make_grid(tensor_data, pad_value=pad_value,padding=padding) vis = np.array(vis.cpu()).transpose((1,2,0)) if vis.shape[2] == 1: vis = np.stack([vis, vis, vis], axis=-1) return vis什么意思

这段代码的作用是将给定的张量数据转换为numpy格式的网格图像,并可以指定填充值和填充大小。它使用了PyTorch的utils工具函数来创建网格图像,并进行了一些numpy处理来确保图像的通道数正确。最后返回numpy格式的网格图像。

相关推荐

翻译代码import numpy as np from cvxopt import matrix, solvers solvers.options['show_progress'] = False # 市场出清,考虑网络阻塞 def market_clearing(alpha): # 供给曲线的截距和斜率 a_real = np.array([15.0, 18.0]) b_real = np.array([0.01, 0.008]) # 需求曲线的截距和斜率 c_real = np.array([40.0, 40.0]) * -1 d_real = np.array([0.08, 0.06]) # 机组功率上下限 p_min = np.array([0.0, 0.0]) p_max = np.array([500.0, 500.0]) # 负荷需求上下限 q_min = np.zeros(2) q_max = np.array([500.0, 666.666666666667]) J_g = ([[-0.333333333333333, -0.333333333333333, -0.666666666666667], [0.333333333333334, -0.666666666666667, -0.333333333333333], [0, 0, 0]]) J = np.array([[-0.333333333333333, 0.0, 0.333333333333333, -0.333333333333334], [-0.333333333333333, 0.0, 0.333333333333333, 0.666666666666667], [-0.666666666666667, 0.0, 0.666666666666667, 0.333333333333333]]) J_max = np.array([25.0, 1000.0, 1000.0, 25.0, 1000.0, 1000.0]) P = matrix(np.diag(np.append(b_real, d_real))) q = matrix(np.append(alpha, c_real)) G = matrix(np.vstack((J, -J, np.diag(-np.ones(4)), np.diag(np.ones(4))))) h = matrix(np.hstack((J_max, -p_min, -q_min, p_max, q_max))) A = matrix(np.hstack((-np.ones(2), np.ones(2)))).T b = matrix(0.0) sv = solvers.qp(P, q, G, h, A, b) miu1 = sv['z'][0:3] miu2 = sv['z'][3:6] nodal_price = (np.ones((3, 1)) * sv['y'][0] - np.dot(J_g, miu1 - miu2)).squeeze() nodal_price_g = np.array([nodal_price[0], nodal_price[2]]) mc_amount = np.array(sv['x'][:2]).squeeze() cost_real = 0.5 * b_real * mc_amount ** 2 + a_real * mc_amount cost_declare = mc_amount * np.transpose(nodal_price_g) profit = cost_declare - cost_real return nodal_price_g, profit if __name__ == '__main__': alpha = np.array([20.29, 22.98]) print(market_clearing(alpha))

最新推荐

recommend-type

HP-Socket编译-Linux

HP-Socket编译-Linux
recommend-type

JavaScript_生活在Discord上的开源社区列表.zip

JavaScript
recommend-type

JavaScript_MultiOn API.zip

JavaScript
recommend-type

JavaScript_简单和完整的React DOM测试工具,鼓励良好的测试实践.zip

JavaScript
recommend-type

JavaScript_成为一个Nodejs开发者.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。