解释这行代码:atom_idx_1 = molecule.GetSubstructMatch(Chem.MolFromSmarts(f'[C]~*{r}'))
时间: 2024-05-21 08:13:09 浏览: 141
这行代码是根据化学结构中的SMARTS模式匹配来获取分子中与特定基团相连的原子的下标。其中,f'[C]~*{r}'表示SMARTS模式,[C]表示相邻的原子是碳,~*表示与碳原子相连的任何原子,{r}表示r变量的值,即前面定义的分子基团。Chem.MolFromSmarts()函数将SMARTS字符串转换成分子对象,molecule.GetSubstructMatch()函数返回与SMARTS匹配的分子的下标。
相关问题
解释一下这个代码num_epochs = 500 batch_size = 2048 num_samples = x_train_tensor.size(0) num_batches = num_samples // batch_size for epoch in range(num_epochs): for i in range(num_batches): start_idx = i * batch_size end_idx = (i + 1) * batch_size inputs = x_train_tensor[start_idx:end_idx] labels = y_train_tensor[start_idx:end_idx] optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs.squeeze(), labels) loss.backward() optimizer.step()
这段代码是一个训练模型的循环。它使用了一个外部的训练循环来迭代指定次数的epoch(训练轮数)。
首先,代码定义了一些训练相关的参数,包括num_epochs(训练轮数)、batch_size(批处理大小)、num_samples(训练样本数量)和num_batches(每个epoch中的批次数量)。
接下来,通过两个嵌套的循环进行训练。外层循环迭代num_epochs次,内层循环迭代num_batches次。每次内层循环都会处理一个batch_size大小的训练样本。
在内层循环中,根据当前的i来确定当前批次的起始索引start_idx和结束索引end_idx。然后,从训练数据中提取出对应的输入inputs和标签labels。
接下来,通过调用optimizer.zero_grad()来清除之前计算的梯度信息。然后,将inputs传递给模型model进行前向传播,得到输出outputs。
计算模型输出与标签之间的损失loss,使用指定的损失函数criterion,并通过调用loss.backward()来计算梯度。最后,调用optimizer.step()来更新模型的参数,以最小化损失。
通过这个循环,模型将在给定的训练数据上进行多次迭代的优化,以逐渐提高模型的性能。
解释这段代码 def update_activation(i, pruned_model, activation, CBL_idx): next_idx = i + 1 if pruned_model.module_defs[next_idx]['type'] == 'convolutional': next_conv = pruned_model.module_list[next_idx][0] conv_sum = next_conv.weight.data.sum(dim=(2, 3)) offset = conv_sum.matmul(activation.reshape(-1, 1)).reshape(-1) if next_idx in CBL_idx: next_bn = pruned_model.module_list[next_idx][1] next_bn.running_mean.data.sub_(offset) else: next_conv.bias.data.add_(offset)
这段代码是用于更新激活值的函数。函数接受四个参数:`i` 表示当前层的索引,`pruned_model` 表示被修剪的模型,`activation` 表示当前层的激活值,`CBL_idx` 是一个列表,其中包含需要修剪的卷积层的索引。
首先,通过 `next_idx = i + 1` 计算下一层的索引。
然后,判断下一层的类型是否为卷积层。如果是卷积层,则执行下面的代码块。
在代码块中,首先获取下一层的卷积操作符 `next_conv`。然后,计算卷积核在空间维度上的和,即 `conv_sum = next_conv.weight.data.sum(dim=(2, 3))`。这是为了得到每个卷积核在该层输出特征图上的感受野大小。
接下来,通过矩阵乘法 `conv_sum.matmul(activation.reshape(-1, 1))` 将卷积核的感受野大小与当前层的激活值相乘,得到一个偏移量 `offset`。这个偏移量表示下一层的偏置项需要调整的大小。
然后,判断下一层是否在需要修剪的卷积层索引列表 `CBL_idx` 中。如果在列表中,则表示该层是 Batch Normalization 层,需要更新其 running_mean。通过 `next_bn = pruned_model.module_list[next_idx][1]` 获取下一层的 Batch Normalization 操作符,然后使用 `next_bn.running_mean.data.sub_(offset)` 减去偏移量来更新其 running_mean。
如果下一层不在需要修剪的卷积层索引列表中,则表示该层是普通的卷积层,需要更新其偏置项。通过 `next_conv.bias.data.add_(offset)` 将偏移量加到下一层的偏置项上。
综上所述,这段代码的作用是根据当前层的激活值和下一层的类型,来更新下一层的偏置项或 running_mean。这样可以保持模型在修剪过程中的准确性。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)