subplot(313); plot(t,sam); hold on; %画出AM信号波形 plot(t,mt,'r--'); title('DSB调幅信号'); axis([0 4 -1.5 1.5]); line([0,4],[0,0],'color','k'); %相干解调 figure(2); subplot(211); st=sam.*cos(wc*t); plot(t,mt); title('原始基带信号波形'); axis([0 4 -1.5 1.5]); line([0,4],[0,0],'color','k');

时间: 2023-06-19 12:10:06 浏览: 110
这段代码是在Matlab中画出DSB调幅信号的波形和相干解调后的波形。其中,subplot(313)是将画布分成了三行一列,当前正在画第三行的图;plot(t,sam)绘制AM信号波形;plot(t,mt,'r--')绘制原始基带信号的波形,r--表示使用红色虚线绘制;title('DSB调幅信号')给图像加上标题;axis([0 4 -1.5 1.5])设置坐标轴范围;line([0,4],[0,0],'color','k')绘制横坐标为0到4,纵坐标为0的一条黑色直线。 subplot(211)是将画布分成了两行一列,当前正在画第一行的图;st=sam.*cos(wc*t)是相干解调的过程,将AM信号与载波信号相乘得到解调后的信号st;plot(t,mt)绘制原始基带信号的波形;title('原始基带信号波形')给图像加上标题;axis([0 4 -1.5 1.5])设置坐标轴范围;line([0,4],[0,0],'color','k')绘制横坐标为0到4,纵坐标为0的一条黑色直线。
相关问题

已知两信号f1(t)=ε(t-1)-ε(t-2), f2(t)=ε(t-2)-ε(t-3),求卷积g(t)=f1(t)*f2(t)。 MATLAB程序如下: t1=1:0.01:2;t2-2:0.01:3; t3=3:0.01:5; %两信号卷积结果自变量t区间应为:[两信号起始时刻之%和~两信号终止时 刻之和]请自行推导该结论 fl=ones(size(t1)); %高度为一的门函数,时间从t=1到t=2 f2=ones(size(t2)); %高度为一的门函数,时间从t=2到t=3 g=conv(f1,f2); %对f1和f2进行卷积 subplot(3,1,1),plot(t1,f1); %画f1的波形 subplot(3,1,2), plot(t2, f2); %画 f2的波形 subplot(3,1,3),plot(t3,g); % grid on;画g的波形

As an AI language model, I do not have any feelings or emotions, therefore the concept of null doesn't apply to me like it would to a human. However, null can refer to a value that represents no value or absence of a value in programming or database systems.

将以下代码改为python代码:改为python代码% 幅度调制与解调 w1=5;w0=50;K=0;km=1; kc=1; N=1000; win=4pi/w1; lp=2w1+80; t=linspace(0,win,N); dt=win/N; m=kmsin(w1t); %调制信号 c=kccos(w0t); %载波信号 p=K+m; %调制信号偏置 y=p.c; %已调制信号 m0=y.c; %解调信号 w=linspace(-3w0,3w0,N); %频率序列 M=mexp(-jt'w)dt; %傅里叶变换 C=cexp(-jt'w)dt; Y=yexp(-jt'w)dt; M0=m0exp(-jt'w)dt; LPF=[zeros(1,(N-2lp)/2-1),2ones(1,2lp+1),zeros(1,(N-2lp)/2)]; %低通滤波器振幅谱 M1=M0.LPF; %低通滤波器滤波 dw=2w0/N; m1=M1exp(jw't)/pidw; %傅里反叶变换 magM=abs(M); %振幅谱 magC=abs(C); magY=abs(Y); magM0=abs(M0); magM1=abs(M1); figure; subplot(5,2,1);plot(t,m); %调制信号波形 axis([0,win,-1.1,+1.1]); subplot(5,2,2);plot(w,magM); %调制信号振幅谱 subplot(5,2,3);plot(t,c); %载波信号波形 axis([0,win,-1.1,+1.1]); subplot(5,2,4);plot(w,magC); %载波信号振幅谱 subplot(5,2,5);plot(t,y); %已调制信号波形 axis([0,win,-1.1,+1.1]); subplot(5,2,6);plot(w,magY); %已调制信号振幅谱 subplot(5,2,7);plot(t,m0); %解调信号波形 axis([0,win,-1.1,+1.1]); subplot(5,2,8);plot(w,magM0); %解调信号振幅谱 subplot(5,2,9);plot(t,m1); %低通滤波后信号波形 axis([0,win,-1.1,+1.1]); subplot(5,2,10);plot(w,magM1); %低通滤波后信号振幅谱

# 改为Python代码 import numpy as np import matplotlib.pyplot as plt w1 = 5 w0 = 50 K = 0 km = 1 kc = 1 N = 1000 win = 4 * np.pi / w1 lp = 2 * w1 + 80 t = np.linspace(0, win, N) dt = win / N m = km * np.sin(w1 * t) # 调制信号 c = kc * np.cos(w0 * t) # 载波信号 p = K + m # 调制信号偏置 y = p * c # 已调制信号 m0 = y / c # 解调信号 w = np.linspace(-3 * w0, 3 * w0, N) # 频率序列 M = np.exp(-1j * np.outer(t, w)) * dt # 傅里叶变换 C = np.exp(-1j * np.outer(t, w)) * dt # 傅里叶变换 Y = np.exp(-1j * np.outer(t, w)) * dt # 傅里叶变换 M0 = np.exp(-1j * np.outer(t, w)) * dt # 傅里叶变换 LPF = np.concatenate((np.zeros((N - 2 * lp) // 2 - 1), 2 * np.ones(2 * lp + 1), np.zeros((N - 2 * lp) // 2))) # 低通滤波器振幅谱 M1 = M0 * LPF # 低通滤波器滤波 dw = 2 * w0 / N m1 = np.sum(M1 * np.exp(1j * np.outer(w, t)), axis=1) / np.pi / dw # 傅里反叶变换 magM = np.abs(M) # 振幅谱 magC = np.abs(C) # 振幅谱 magY = np.abs(Y) # 振幅谱 magM0 = np.abs(M0) # 振幅谱 magM1 = np.abs(M1) # 振幅谱 # 绘图 fig, axs = plt.subplots(nrows=5, ncols=2, figsize=(10, 20)) axs[0, 0].plot(t, m) axs[0, 0].set_ylim(-1.1, 1.1) axs[0, 0].set_title('调制信号波形') axs[0, 1].plot(w, magM) axs[0, 1].set_title('调制信号振幅谱') axs[1, 0].plot(t, c) axs[1, 0].set_ylim(-1.1, 1.1) axs[1, 0].set_title('载波信号波形') axs[1, 1].plot(w, magC) axs[1, 1].set_title('载波信号振幅谱') axs[2, 0].plot(t, y) axs[2, 0].set_ylim(-1.1, 1.1) axs[2, 0].set_title('已调制信号波形') axs[2, 1].plot(w, magY) axs[2, 1].set_title('已调制信号振幅谱') axs[3, 0].plot(t, m0) axs[3, 0].set_ylim(-1.1, 1.1) axs[3, 0].set_title('解调信号波形') axs[3, 1].plot(w, magM0) axs[3, 1].set_title('解调信号振幅谱') axs[4, 0].plot(t, m1) axs[4, 0].set_ylim(-1.1, 1.1) axs[4, 0].set_title('低通滤波后信号波形') axs[4, 1].plot(w, magM1) axs[4, 1].set_title('低通滤波后信号振幅谱') plt.show()
阅读全文

相关推荐

% 设置参数 alpha = 0.2; % 吸收系数 d = 10; % 传播距离 f = 1e6; % 超声波信号频率 fs = 16*f; % 采样率 fc = 4*f; % 载波频率 T = 1/fc; % 周期 t = 0:1/fs:T-1/fs; % 采样时间序列 N = length(t); % 采样点数 A = 1; % 振幅 M = 64; % 星座大小 %生成64QAM调制信号 data = randi([0 M-1], [1, N/2]); constellation = qammod(data, M, 'gray'); signalI = real(constellation); signalQ = imag(constellation); signal = zeros(1, N); signal(1:2:end) = signalI; signal(2:2:end) = signalQ; %超声波信号衰减 attenuation = exp(-alpha*d); signal = signal*attenuation; %正交振幅调制 carrierI = cos(2*pi*fc*t); carrierQ = sin(2*pi*fc*t); modulatedI = signal.*carrierI; modulatedQ = signal.*carrierQ; %解调信号 demodulatedI = modulatedI.*carrierI; demodulatedQ = modulatedQ.*carrierQ; demodulated = demodulatedI + demodulatedQ; %误码率曲线 SNR = -10:2:20; ber = zeros(size(SNR)); for i = 1:length(SNR) noisyI = awgn(modulatedI, SNR(i), 'measured'); noisyQ = awgn(modulatedQ, SNR(i), 'measured'); noisySignal = noisyI.*carrierI + noisyQ.*carrierQ; noisyDemodI = noisySignal.*carrierI; noisyDemodQ = noisySignal.*carrierQ; noisyDemod = noisyDemodI + noisyDemodQ; noisyData = qamdemod(noisyDemod, M, 'gray'); [~, ber(i)] = biterr(data, noisyData); end %星座图 scatterplot(constellation) %调制后波形和解调后与原信号波形曲线对比图 figure subplot(311) plot(t, signal) title('原信号') subplot(312) plot(t, modulatedI) hold on plot(t, modulatedQ) title('正交振幅调制后信号') legend('In-phase', 'Quadrature') subplot(313) plot(t, signal - demodulated) title('解调后信号与原信号的差')data与noisyDatasize不一致怎么解决

%% Sa的时域波形与频谱图 t1=-20:0.05:20; %(为什么去取值会影响频谱图) f1=sinc(t1/pi); %相当于Sa(t) figure(1); subplot(221); plot(t1,f1); xlabel('t1');ylabel('ft1'); title('Sa(t)时域波形'); grid; subplot(222); N=1000; %定义N k=-N:N; %2001个点 w1=10; %频率范围在(-10,10) w=k*w1/N; %在(-10,10)取2001个点 F=f1*exp(-1j*t1'.*w)*0.05; %傅里叶变换 plot(w,F); xlabel('x'); ylabel('fw1'); title('Sa(t)频谱图'); grid; %% 抽样(离散图和频谱图) wm=1; %信号带宽((带限信号) wc=1*wm; %截止频率 Ts=2; %采样间隔0(Ts<pi是过采样) ws=2*pi/Ts; %最低抽样频率 n=-10:10; %采样点个数(序列长度) Tss=-20:Ts:20;%时域具体采样点 f2=sinc(Tss/pi); %抽样信号 subplot(223); stem(Tss/pi,f2);%抽样后的离散图 xlabel('kTs'); ylabel('f(kTs)'); title('Sa(t)的抽样信号'); %冲激抽样后的频谱 F2w=f2*exp(-1j*Tss'*w)*Ts; Fw2=abs(F2w); subplot(2,2,4); plot(w,Fw2); xlabel('w'); ylabel('Fs(w)'); title('Sa(t)的抽样信号的频谱图'); %% 重构 figure(2); Dt=0.005;t=-20:Dt:20;%(重构后的取点的间隔) fa=f2*Ts*wc/pi*sinc((wc/pi)*(ones(length(Tss),1)*t-Tss'*ones(1,length(t)))); %(wc是滤波器截止频率要大于等于wm) %信号重建(将抽样的离散信号通过内插方法重构成连续的信号) subplot(311); plot(t,fa); xlabel('t'); ylabel('fa(t)'); title('重构Sa(t)'); grid; subplot(312); plot(t1, f1, t, fa); title('f1与fa进行对比');%可通过改变WS=多少倍的WM看出差别 xlabel('t/s'); ylabel('幅度'); legend('f1', 'fa'); grid on; %% 误差 error =abs(fa-sinc(t/pi)); subplot(313); plot(t,error); xlabel("t"); ylabel("error(t)"); title("重构信号与原信号的误差error(t)"); 详细解释这段代码fa=f2*Ts*wc/pi*sinc((wc/pi)*(ones(length(Tss),1)*t-Tss'*ones(1,length(t))));

最新推荐

recommend-type

Python实现正弦信号的时域波形和频谱图示例【基于matplotlib】

在Python编程中,生成和分析正弦信号的时域波形和频谱图是一项常见的任务,特别是在信号处理、数据分析和科学计算领域。本示例基于`matplotlib`库展示了如何使用Python来实现这一功能,同时也涉及到了一些基础的数学...
recommend-type

数字信号处理实验报告-(1)-时域离散信号的基本运算.doc

《数字信号处理实验报告——时域离散信号的基本运算》 实验报告的目的是为了深入理解数字信号处理中的基本概念和操作,特别是在时域离散信号的处理方面。实验以MATLAB为工具,通过实践操作来熟悉离散信号的生成、...
recommend-type

Simulink仿真:基于扰动观察法的光伏MPPT改进算法 参考文献:基于扰动观察法的光伏MPPT改进算法+录制视频讲解 仿真平台:MATLAB Simulink 关键词:光伏;MPPT;扰动观察法

Simulink仿真:基于扰动观察法的光伏MPPT改进算法 参考文献:基于扰动观察法的光伏MPPT改进算法+录制视频讲解 仿真平台:MATLAB Simulink 关键词:光伏;MPPT;扰动观察法;模糊控制 主要内容:针对 MPPT 算法中扰动观察法在稳态时容易在 MPP 点处震荡,以及步长固定后无法调整等缺点,提出一种算法的优化改进,将模糊控制器引入算法中,通过将计算得到的偏差电压作为第一个输入量,同时考虑到扰动观察法抗干扰能力弱,再增加一个反馈变量做为第二输入量来提高其稳定性.仿真分析表明,相比较传统的扰动观察法,在外部温度和光照强度发生变化时,改进的扰动观察法稳定性较好,追踪速率有所提高,同时需要的参数计算量少,能较好的追踪光伏最大功率。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单