clear all; close all; clc; % Time Domain 0 to T T = 2560; %这里改数据量 fs = 1/T; t = (1:T)/T; freqs = 2*pi*(t-0.5-1/T)/(fs); % center frequencies of components f = xlsread('acc_00001.csv','F1:F2560'); %load ("Bearing1_1.mat",'h') % some sample parameters for VMD alpha = 1000; % moderate bandwidth constraint tau = 0; % noise-tolerance (no strict fidelity enforcement) K = 16; % 4 modes DC = 0; % no DC part imposed init = 1; % initialize omegas uniformly tol = 1e-7; %--------------- Run actual VMD code [u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol); subplot(size(u,1)+1,2,1); plot(t,f,'k');grid on; title('VMD分解'); subplot(size(u,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱'); for i = 2:size(u,1)+1 subplot(size(u,1)+1,2,i*2-1); plot(t,u(i-1,:),'k');grid on; subplot(size(u,1)+1,2,i*2); plot(freqs,abs(fft(u(i-1,:))),'k');grid on; save emd_data u end %---------------run EMD code imf = emd(f); figure; subplot(size(imf,1)+1,2,1); plot(t,f,'k');grid on; title('EMD分解'); subplot(size(imf,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱'); for i = 2:size(imf,1)+1 subplot(size(imf,1)+1,2,i*2-1); plot(t,imf(i-1,:),'k');grid on; subplot(size(imf,1)+1,2,i*2); plot(freqs,abs(fft(imf(i-1,:))),'k');grid on; save vmd_data imf end 解释一下这个程序并在每一行后面加上备注
时间: 2024-03-20 09:39:29 浏览: 118
ga_main_gamain_tic函数_遗传算法源码_AllClear_
这个程序主要是进行信号分解的比较,其中使用了两种方法:VMD和EMD。下面是每一行代码的注释:
```matlab
% 清空变量、关闭所有图形窗口、清空命令窗口
clear all; close all; clc;
% 时间域范围0到T,这里T=2560,可以根据实际情况修改
T = 2560; fs = 1/T;
% 生成频率坐标轴,用于后面的频域显示
t = (1:T)/T; freqs = 2*pi*(t-0.5-1/T)/(fs);
% 从CSV文件中读入数据(这里读取了第一列的数据),可以根据实际情况修改
f = xlsread('acc_00001.csv','F1:F2560');
% 设置VMD的参数
alpha = 1000; % moderate bandwidth constraint
tau = 0; % noise-tolerance (no strict fidelity enforcement)
K = 16; % 4 modes
DC = 0; % no DC part imposed
init = 1; % initialize omegas uniformly
tol = 1e-7;
% 调用VMD进行信号分解
[u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol);
% 显示原始信号和对应的频域图像
subplot(size(u,1)+1,2,1); plot(t,f,'k');grid on; title('VMD分解');
subplot(size(u,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱');
% 遍历每一个分解出来的模态分量
for i = 2:size(u,1)+1
% 显示该模态分量的时域和频域图像,并将分解结果保存到文件中
subplot(size(u,1)+1,2,i*2-1);
plot(t,u(i-1,:),'k');grid on;
subplot(size(u,1)+1,2,i*2);
plot(freqs,abs(fft(u(i-1,:))),'k');grid on;
save emd_data u
end
% 调用EMD进行信号分解
imf = emd(f);
% 显示原始信号和对应的频域图像
figure; subplot(size(imf,1)+1,2,1); plot(t,f,'k');grid on; title('EMD分解');
subplot(size(imf,1)+1,2,2); plot(freqs,abs(fft(f)),'k');grid on; title('对应频谱');
% 遍历每一个分解出来的IMF分量
for i = 2:size(imf,1)+1
% 显示该IMF分量的时域和频域图像,并将分解结果保存到文件中
subplot(size(imf,1)+1,2,i*2-1);
plot(t,imf(i-1,:),'k');grid on;
subplot(size(imf,1)+1,2,i*2);
plot(freqs,abs(fft(imf(i-1,:))),'k');grid on;
save vmd_data imf
end
```
阅读全文