pretrained_net.load_state_dict(models.resnet34(pretrained=True).state_dict())
时间: 2024-01-06 13:06:52 浏览: 153
这行代码的作用是将预先训练好的 ResNet34 模型的参数加载到一个名为 `pretrained_net` 的新模型中。具体来说,`models.resnet34(pretrained=True)` 会返回一个预先训练好的 ResNet34 模型,`state_dict()` 方法则会返回该模型的所有参数。这些参数包括卷积层和全连接层的权重和偏差等。`load_state_dict()` 方法会将这些参数加载到 `pretrained_net` 中,从而使 `pretrained_net` 也具有了与预训练模型相同的参数。这通常被称为“迁移学习”,因为我们可以利用预训练模型在新任务中进行更快速和更准确的训练。
相关问题
D:\Work Bag\Python\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( D:\Work Bag\Python\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet34_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet34_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) Traceback (most recent call last): File "C:/Users/29800/Desktop/rPPG-master/run.py", line 65, in <module> runPOS(source) File "C:/Users/29800/Desktop/rPPG-master/run.py", line 39, in __call__ capture = CaptureFrames(self.batch_size, source, show_mask=True) File "C:\Users\29800\Desktop\rPPG-master\capture_frames.py", line 20, in __init__ self.model.load_state_dict(torch.load('linknet.pth')) File "D:\Work Bag\Python\lib\site-packages\torch\serialization.py", line 815, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "D:\Work Bag\Python\lib\site-packages\torch\serialization.py", line 1033, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'v'.
这个警告和错误可能是由于使用了不兼容的 pickle 版本造成的。pickle 在序列化和反序列化 Python 对象时,需要使用相同版本的 pickle。如果对象是使用不同版本的pickle进行序列化的,那么在反序列化时就会出现 _pickle.UnpicklingError 错误。
解决方法是尝试更新 pickle 版本或者使用相同版本的 pickle 进行序列化和反序列化操作。如果你使用的是 Python 3,在进行 pickle 操作时,建议使用 "pickle" 模块的 "protocol" 参数指定协议版本,例如 pickle.dump(obj, file, protocol=4),指定协议版本为 4。这样可以确保在不同 Python 版本之间进行 pickle 操作时,能够更好地兼容。
此外,第一个警告是关于 PyTorch 中的 pretrained 参数已经被弃用,建议使用 weights 参数替代;第二个警告是关于传递给函数的参数已经被弃用,建议使用更合适的参数传递方式。建议按照警告信息进行修改,以免在将来的版本中出现问题。
resnet = torchvision.models.resnet34(pretrained=True)如何指定本地存储的预训练权重
如果您已经下载了预训练权重并希望在本地使用它们,可以将`pretrained`参数设置为`False`,然后使用`torch.load()`函数手动加载本地权重文件。例如,以下代码将加载本地存储的`resnet34-333f7ec4.pth`文件作为ResNet-34的预训练权重:
```python
import torch
import torchvision
resnet = torchvision.models.resnet34(pretrained=False)
state_dict = torch.load('resnet34-333f7ec4.pth')
resnet.load_state_dict(state_dict)
```
请确保将`resnet34-333f7ec4.pth`文件放在当前工作目录中或指定正确的文件路径。
阅读全文