python ADF检验
时间: 2023-09-02 14:15:44 浏览: 411
数据平稳性ADF检验(基于Python编程语言实现)
ADF检验(Augmented Dickey-Fuller test)是用于检验时间序列数据是否具有平稳性的一种常用方法。
在Python中,可以使用statsmodels模块的adfuller()函数进行ADF检验。下面是一个简单的示例代码:
```python
from statsmodels.tsa.stattools import adfuller
# 定义一个时间序列数据
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# 进行ADF检验
result = adfuller(data)
# 输出ADF检验结果
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
print('Critical Values:')
for key, value in result[4].items():
print('\t%s: %.3f' % (key, value))
```
在这个示例中,我们使用adfuller()函数对一个简单的时间序列数据进行了ADF检验。输出结果包括ADF统计值、p值以及关键值(Critical Values)。通过比较p值与关键值,可以判断该时间序列数据是否具有平稳性。如果p值小于关键值,说明该时间序列数据具有平稳性。
阅读全文