python最小圆覆盖

时间: 2023-12-27 09:01:03 浏览: 63
Python最小圆覆盖是一种常用的数学计算方法,用于找到一组给定点的最小圆,使得这个圆能够将所有点都覆盖,并且半径最小。在Python中,可以使用不同的算法来实现最小圆覆盖,其中最常用的是Welzl算法和Ritter算法。 Welzl算法是一种递归算法,通过不断找出包含待覆盖点集合的最小圆,然后逐步减少点集合的规模,最终找到整个点集的最小包围圆。这个算法在Python中可以通过递归调用来实现,需要一个函数来计算两点之间的距离,以及一个函数来计算三点之间的外接圆。 另一种常用的算法是Ritter算法,它是一种迭代算法,通过不断更新包围圆的位置和半径,最终找到最小的覆盖圆。这个算法在Python中可以通过循环迭代来实现,需要一个函数来计算点集合中的最远点以及包围圆的位置和半径更新函数。 无论是Welzl算法还是Ritter算法,都可以使用Python中的数学库来实现,例如numpy库用于计算点之间的距离,以及matplotlib库用于可视化最小覆盖圆的结果。通过这些算法和工具,我们可以在Python中轻松地找到一组给定点的最小圆覆盖,并且得到最优的结果。
相关问题

点集最小圆覆盖python

要找到一个点集的最小圆覆盖,可以使用 Welzl 算法。下面是一个用 Python 实现的示例代码: ```python import random import math # 计算两个点之间的距离 def distance(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) # 检查点是否在圆内 def in_circle(circle, point): center, radius = circle return distance(center, point) <= radius # Welzl 算法的递归实现 def welzl(points, boundary): if len(points) == 0 or len(boundary) == 3: if len(boundary) == 3: return boundary elif len(boundary) == 2: circle = (tuple([(boundary[0][0] + boundary[1][0]) / 2, (boundary[0][1] + boundary[1][1]) / 2]), distance(boundary[0], boundary[1]) / 2) return circle else: return None random_point = random.choice(points) points.remove(random_point) circle = welzl(points, boundary) if circle is not None and in_circle(circle, random_point): return circle new_boundary = boundary.copy() new_boundary.append(random_point) return welzl(points, new_boundary) # 使用Welzl算法找到最小圆覆盖 def min_circle_cover(points): random.shuffle(points) return welzl(points, []) # 测试代码 points = [(0, 0), (1, 0), (0, 1), (1, 1), (0.5, 0.5)] circle = min_circle_cover(points) print(f"圆心坐标: {circle[0]}") print(f"半径: {circle[1]}") ``` 这段代码使用了 Welzl 算法来计算点集的最小圆覆盖。首先定义了两个辅助函数:`distance`用于计算两个点之间的距离,`in_circle`用于判断一个点是否在圆内。 然后实现了 Welzl 算法的递归函数 `welzl`,该函数根据输入的点集和边界点列表进行递归计算。在每一步递归中,随机选择一个点并将其从点集中移除,然后继续递归计算。递归的结束条件是点集为空或者边界列表长度为3(即三个点可以确定一个圆)。 最后,定义了 `min_circle_cover` 函数,该函数对点集进行随机打乱后调用 `welzl` 函数来找到最小圆覆盖。 在测试代码中,使用了一个简单的点集进行测试,并打印出最小圆覆盖的圆心坐标和半径。你可以根据自己的需要修改测试代码和输入的点集。

python最小圆算法

关于Python的最小圆算法,你可以参考维基百科上的最小圆覆盖(经典算法【三点定圆)进行理论学习。此外,你还可以在Project Nayuki的代码实现中找到相应的Python代码。另外,你还可以在网站https://www.nayuki.io/page/smallest-enclosing-circle上找到不同语言的算法源程序,包括Python。这些资源将为你提供关于Python最小圆算法的详细信息和实现方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [最小覆盖圆(smallest enclosing circle)算法 python 实现](https://blog.csdn.net/Forrest97/article/details/114366968)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [点集的最小覆盖圆求解](https://blog.csdn.net/Ymy_dsj/article/details/128303165)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

最新推荐

recommend-type

Python实现霍夫圆和椭圆变换代码详解

本篇文章将详细讲解如何使用Python实现霍夫圆和椭圆变换。 首先,让我们了解霍夫圆变换的基本原理。在极坐标系中,圆可以表示为 \( x = x_0 + r\cos(\theta) \) 和 \( y = y_0 + r\sin(\theta) \),其中 \( (x_0, y...
recommend-type

Python中实现最小二乘法思路及实现代码

在Python中,我们可以借助科学计算库如NumPy和SciPy来轻松实现最小二乘法。 在Python中实现最小二乘法时,通常我们会遵循以下步骤: 1. **数据准备**:首先,我们需要收集或生成一组数据点,这些数据点通常由两个...
recommend-type

基于Python制作美观动态圆环图、饼图

主要介绍了基于Python制作美观动态圆环图、饼图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

python向已存在的excel中新增表,不覆盖原数据的实例

在Python编程中,有时我们需要对Excel文件进行操作,例如向已存在的Excel文件中添加新的工作表(sheet)或更新已有内容,但不覆盖原始数据。本文将详细介绍如何使用Python实现这个功能,特别是针对标签提到的"python...
recommend-type

Python实现图片查找轮廓、多边形拟合、最小外接矩形代码

然后,使用`cv2.circle()`在原图上绘制这个最小外接圆。 总之,Python的OpenCV库提供了强大的工具来处理图像中的形状和轮廓。从轮廓检测到多边形拟合和最小外接几何形状的计算,这些技术对于理解和分析图像内容至关...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。