criterion = CRITERIA_REG[self.criterion](self.n_outputs_, KeyError: 'entropy'
时间: 2024-04-21 18:24:57 浏览: 138
这个错误是因为你使用了一个无效的损失函数名称 "entropy"。根据你提供的代码,似乎你想使用交叉熵损失函数,但是在 CRITERIA_REG 字典中没有找到 "entropy" 对应的值。
要解决这个问题,你可以检查一下 CRITERIA_REG 字典中是否包含正确的损失函数名称。如果没有,你可以尝试使用其他有效的损失函数,如 "mse"(均方误差)或 "mae"(平均绝对误差)。
另外,确保你在使用损失函数之前已经定义了 CRITERIA_REG 字典,并确保损失函数的名称与字典中的键匹配。
相关问题
class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size
这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的过拟合问题,它通过对真实标签进行平滑处理来减少模型对噪声的敏感度。这段代码的 forward 方法实现了 MLP 模型的前向传播,以及 LabelSmoothingLoss 的计算。其中,true_dist 是经过平滑处理后的真实标签分布,kl 是计算 KL 散度的结果,最终返回的是 kl 的平均值。
import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码
下面是正确缩进的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义基本循环神经网络模型
class RNNModel(nn.Module):
def __init__(self, rnn_type, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn_type = rnn_type
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.encoder = nn.Embedding(input_size, hidden_size)
if rnn_type == 'RNN':
self.rnn = nn.RNN(hidden_size, hidden_size, num_layers)
elif rnn_type == 'GRU':
self.rnn = nn.GRU(hidden_size, hidden_size, num_layers)
self.decoder = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
input = self.encoder(input)
output, hidden = self.rnn(input, hidden)
output = output.view(-1, self.hidden_size)
output = self.decoder(output)
return output, hidden
def init_hidden(self, batch_size):
if self.rnn_type == 'RNN':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
elif self.rnn_type == 'GRU':
return torch.zeros(self.num_layers, batch_size, self.hidden_size)
# 定义数据集
with open('汉语音节表.txt', encoding='utf-8') as f:
chars = f.readline()
chars = list(chars)
idx_to_char = list(set(chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
corpus_indices = [char_to_idx[char] for char in chars]
# 定义超参数
input_size = len(idx_to_char)
hidden_size = 256
output_size = len(idx_to_char)
num_layers = 1
batch_size = 32
num_steps = 5
learning_rate = 0.01
num_epochs = 100
# 定义模型、损失函数和优化器
model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
model.train()
hidden = model.init_hidden(batch_size)
loss = 0
for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps):
optimizer.zero_grad()
hidden = hidden.detach()
output, hidden = model(X, hidden)
loss = criterion(output, Y.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")
```
阅读全文