class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() # a=batch size(=1) # b=number of feature maps # (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) # resise F_XL into \hat F_XL G = torch.mm(features, features.t()) # compute the gram product # we 'normalize' the values of the gram matrix # by dividing by the number of element in each feature maps. return G.div(a * b * c * d) class StyleLoss(nn.Module): def __init__(self, target, weight): super(StyleLoss, self).__init__() self.target = target.detach() * weight self.weight = weight self.gram = GramMatrix() self.criterion = nn.MSELoss() def forward(self, input): self.output = input.clone() self.G = self.gram(input) self.G.mul_(self.weight) self.loss = self.criterion(self.G, self.target) return self.output def backward(self, retain_graph=True): self.loss.backward(retain_graph=retain_graph) return self.loss
时间: 2023-12-09 16:06:11 浏览: 173
这段代码实现了风格损失的计算。其中GramMatrix模块用来计算输入的特征图的Gram矩阵,StyleLoss模块则用来计算输入图像与目标图像在风格上的差异。具体实现中,输入图像通过GramMatrix模块计算出它的Gram矩阵,然后与目标图像的Gram矩阵计算出它们之间的MSE损失。这个MSE损失就是风格损失,用于衡量输入图像和目标图像在风格上的相似程度。在反向传播时,通过调用backward函数来计算梯度。
相关问题
# Style loss class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() # a=batch size(=1) # b=number of feature maps # (c,d)=dimensions of a f. map (N=c*d) features = input.view(a * b, c * d) # resise F_XL into \hat F_XL G = torch.mm(features, features.t()) # compute the gram product # we 'normalize' the values of the gram matrix # by dividing by the number of element in each feature maps. return G.div(a * b * c * d) class StyleLoss(nn.Module): def __init__(self, target, weight): super(StyleLoss, self).__init__() self.target = target.detach() * weight self.weight = weight self.gram = GramMatrix() self.criterion = nn.MSELoss() def forward(self, input): self.output = input.clone() self.G = self.gram(input) self.G.mul_(self.weight) self.loss = self.criterion(self.G, self.target) return self.output def backward(self, retain_graph=True): self.loss.backward(retain_graph=retain_graph) return self.loss
这段代码是用于计算风格损失的。其中,GramMatrix类用于计算输入的Gram矩阵,即特征图的协方差矩阵,以表达输入的风格信息;StyleLoss类则用于计算输入与目标风格之间的均方误差,作为风格损失。
在forward方法中,输入被克隆为输出,并使用GramMatrix计算出输入的Gram矩阵,再乘以权重,最后计算均方误差得到风格损失。在backward方法中,反向传播损失,并返回损失值。
class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size
这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的过拟合问题,它通过对真实标签进行平滑处理来减少模型对噪声的敏感度。这段代码的 forward 方法实现了 MLP 模型的前向传播,以及 LabelSmoothingLoss 的计算。其中,true_dist 是经过平滑处理后的真实标签分布,kl 是计算 KL 散度的结果,最终返回的是 kl 的平均值。
阅读全文