class Linear_ResBlock(nn.Module): def __init__(self, input_size=1024, output_size=256): super(Linear_ResBlock, self).__init__() self.conv1 = nn.Linear(input_size, input_size) self.conv2 = nn.Linear(input_size, output_size) self.conv_res = nn.Linear(input_size, output_size) self.af = nn.ReLU(inplace=True) def forward(self, feature): # return self.conv2(self.af(self.conv1(self.af(feature)))) + self.conv_res(feature) # 原版 '''支修改版''' x = self.conv1(self.af(feature)) x = self.af(x) x = self.conv2(x) residual = self.conv_res(feature) return x + residual
时间: 2024-04-11 11:29:48 浏览: 94
这是一个名为`Linear_ResBlock`的类,它是一个线性残差块(residual block)。它具有两个线性层(`conv1`和`conv2`)和一个残差连接层(`conv_res`)。输入大小为`input_size`,输出大小为`output_size`。激活函数使用ReLU。在前向传播中,通过第一个线性层,然后经过激活函数,再经过第二个线性层,最后与输入进行残差连接,并返回结果。这个类还提供了一个修改版的前向传播方法,与原版相比,只是将连续的操作拆分为多个步骤,但功能上是一样的。
相关问题
class Linear_ResBlock(nn.Module): def __init__(self, input_size=1024, output_size=256): super(Linear_ResBlock, self).__init__() self.conv1 = nn.Linear(input_size, input_size) self.conv2 = nn.Linear(input_size, output_size) self.conv_res = nn.Linear(input_size, output_size) self.af = nn.ReLU(inplace=True) def forward(self, feature): return self.conv2(self.af(self.conv1(self.af(feature)))) + self.conv_res(feature) 输入的feature是一个(32,1024)的张量,上述报错原因在return这里
根据你提供的代码,问题出现在最后的返回语句上。错误提示中提到的问题与原地修改有关。在这里,你正尝试对`self.conv2(self.af(self.conv1(self.af(feature))))`进行原地修改。
为了解决这个问题,你可以将原地修改的操作改为非原地操作。一种方法是使用`.clone()`方法来创建`self.conv2(self.af(self.conv1(self.af(feature))))`的副本,然后对副本进行操作。修改后的代码如下:
```python
def forward(self, feature):
x = self.conv1(self.af(feature))
x = self.af(x)
x = self.conv2(x)
residual = self.conv_res(feature)
return x + residual
```
在这个修改后的代码中,我们将每个操作都存储在一个中间变量中,并使用非原地操作进行修改。最后,将输入`feature`与`residual`相加,得到最终的输出。
通过这种方式,你应该能够避免原地修改错误,并成功运行你的代码。如果还有其他问题,请随时提问。
这段代码哪里错了 class my_BiGRU(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout): super(my_BiGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.gru_dropout = gru_dropout self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True) self.fc = torch.nn.Linear(hidden_size * 2, output_size) def _setup_BiGRU_layers(self): self.BiGRU_layers = my_BiGRU(input_size=self.args.capsule_out_dim, output_size=self.args.apsule_out_features, hidden_size=self.args.BiGRU_hiddensize, num_layers=self.args.BiGRU_layers, gru_dropout=self.args.BiGRU_dropout, )
这段代码存在两个问题:
1.函数 `_setup_BiGRU_layers` 中的代码应该是在类的构造函数 `__init__` 中进行初始化,而不是在另外一个函数中进行初始化。
2.在调用 `my_BiGRU` 类时,参数名称有误,应该将 `apsule_out_features` 改为 `capsule_out_features`。
改正后的代码如下所示:
```
class my_BiGRU(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout, capsule_out_features):
super(my_BiGRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.gru_dropout = gru_dropout
self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True)
self.fc = torch.nn.Linear(hidden_size * 2, output_size)
self.BiGRU_layers = my_BiGRU(input_size=self.input_size,
output_size=capsule_out_features,
hidden_size=self.hidden_size,
num_layers=self.num_layers,
gru_dropout=self.gru_dropout,
)
```
注意:这里假设 `capsule_out_dim` 和 `args` 都已经在代码中被定义好了。
阅读全文