机器学习recall precision
时间: 2023-08-06 09:07:32 浏览: 99
分类的数据集 dataset.rar
在机器学习中,查准率(precision)和查全率(recall)是用来评估分类模型性能的重要指标。查准率指的是在所有被模型预测为正例的样本中,实际为正例的比例。而查全率指的是在所有实际为正例的样本中,被模型正确预测为正例的比例。
通常情况下,查准率和查全率是相互矛盾的,提高查准率会导致查全率下降,反之亦然。这是因为在分类问题中,我们可以通过调整阈值来决定将样本划分为正例还是负例。当我们降低阈值时,会增加正例的数量,从而提高查全率,但可能会降低查准率。相反,当我们提高阈值时,会减少正例的数量,从而提高查准率,但可能会降低查全率。
为了综合考虑查准率和查全率,我们通常使用F1分数来评估模型的性能。F1分数是查准率和查全率的调和平均值,可以通过以下公式计算:F1 = (2 * precision * recall) / (precision + recall)。
因此,在机器学习中,我们可以使用查准率、查全率和F1分数来评估分类模型的性能。
#### 引用[.reference_title]
- *1* *2* [【机器学习】精确率(precision)、召回率(recall)以及F1分数的概念讲解加python代码实现](https://blog.csdn.net/weixin_42163563/article/details/116697828)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [机器学习之——Precision与Recall](https://blog.csdn.net/educationer/article/details/99580979)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文