(√2-1)0+(sin²1+cos²1+sin1cos1+1)!+2^3*4+1
时间: 2024-04-27 08:16:48 浏览: 149
根据你提供的表达式,我将逐步计算结果:
首先,计算√2-1的值:
√2 ≈ 1.414
1.414 - 1 = 0.414
接下来,计算sin²1+cos²1+sin1cos1+1的值:
sin(1) ≈ 0.841
cos(1) ≈ 0.540
sin²(1) ≈ 0.707
cos²(1) ≈ 0.292
sin(1)cos(1) ≈ 0.456
sin²(1) + cos²(1) + sin(1)cos(1) + 1 ≈ 0.707 + 0.292 + 0.456 + 1 ≈ 2.455
然后,计算2^3*4的值:
2^3 = 2 * 2 * 2 = 8
8 * 4 = 32
最后,将之前计算的结果相加:
0.414 + 2.455 + 32 + 1 = 35.869
所以,(√2-1)0+(sin²1+cos²1+sin1cos1+1)!+2^3*4+1 的结果约为35.869。
相关问题
(√2-1)^0+(sin²1+cos²1+sin1cos1+1)!-3+2^3*4+2+2^3
首先,让我们逐步计算这个表达式:
(√2-1)^0 = 1 (任何数的0次方都等于1)
(sin²1+cos²1+sin1cos1+1) = 1 (根据三角恒等式sin²θ+cos²θ=1)
2^3*4 = 32 (2的3次方等于8,再乘以4等于32)
现在我们将这些结果代入原始表达式中:
(√2-1)^0 + (sin²1+cos²1+sin1cos1+1)!-3 + 2^3*4 + 2 + 2^3
= 1 + 1!-3 + 32 + 2 + 8
= 1 + 1 - 3 + 32 + 2 + 8
= 41
所以,(√2-1)^0+(sin²1+cos²1+sin1cos1+1)!-3+2^3*4+2+2^3 的结果是41。
(√2-1)^0+(sin²1+cos²1+sin1cos1+1)!-3+2^3*4+1
首先,让我们逐步计算这个表达式:
(√2-1)^0 = 1 (任何数的0次方都等于1)
(sin²1+cos²1+sin1cos1+1) = 1 (根据三角恒等式sin²θ+cos²θ=1)
2^3*4 = 32 (指数运算2的3次方等于8,再乘以4等于32)
现在我们将这些结果代入原始表达式:
(√2-1)^0 + (sin²1+cos²1+sin1cos1+1)!-3 + 2^3*4 + 1
= 1 + 1 - 3 + 32 + 1
= 33
所以,(√2-1)^0+(sin²1+cos²1+sin1cos1+1)!-3+2^3*4+1 的结果是33。
阅读全文