python 模拟退火算法
时间: 2023-09-06 22:12:55 浏览: 102
Python模拟退火算法是一种现代优化算法,通过蒙特卡洛迭代求解方法的随机寻优算法来解决组合优化问题。模拟退火算法于1983年成功地应用到组合优化领域。它通过模拟固体物质的退火过程来获得问题的最优解。
在Python中,可以使用模拟退火算法来求解最优解,并将结果可视化。具体的实现代码如下:
```python
all_path, all_ex = sa(3000, pow(10, -1), 0.98, 200, 7, length_mat)
print(search(all_path, length_mat), round(e(search(all_path, length_mat), length_mat)))
iteration = len(all_path)
all_path = np.array(all_path)
all_ex = np.array(all_ex)
plt.xlabel("Iteration")
plt.ylabel("Length")
plt.plot(range(iteration), all_ex)
plt.show()
```
在主函数中,模拟退火算法的过程如下:
```python
count = 0
while self.T > self.Tf:
for i in range(self.iter):
f = self.func(self.x[i], self.y[i])
x_new, y_new = self.generate_new(self.x[i], self.y[i])
f_new = self.func(x_new, y_new)
if self.Metrospolis(f, f_new):
self.x[i = x_new
self.y[i = y_new
ft, _ = self.get_optimal()
self.history['f'].append(ft)
self.history['T'].append(self.T)
self.T = self.T * self.alpha
count = 1
f_best, idx = self.get_optimal()
print(f"F={f_best}, x={self.x[idx]}, y={self.y[idx]}")
```
在模拟退火过程中,当温度大于温度终值时进行迭代并降温。在内循环迭代中,会生成新的解,并根据Metropolis准则判断是否接受新解。如果接受,则更新当前解。同时,会将函数值和对应的温度存入历史记录,以便后续绘图。最后,输出最优解及对应的函数值。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [模拟退火算法(Python)](https://blog.csdn.net/weixin_58427214/article/details/125901431)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [模拟退火算法的Python实现(非线性函数优化为例)](https://blog.csdn.net/qq_43445362/article/details/108364134)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文