IF i>0 a*(a|b)转化为NFA并输出结果
时间: 2024-02-22 15:56:34 浏览: 103
根据正则表达式转换为 NFA 的算法,可以按照以下步骤得到结果:
1. 构建初始状态 S,并将其加入状态集合中。
2. 对于正则表达式 a*(a|b),首先考虑 a*,可以将其转化为如下的 NFA:
```
a
S ────────► A
ε
```
其中,S 为初始状态,A 为接受状态。该 NFA 表示可以匹配任意数量的字符 a,包括零个。
3. 接下来考虑 (a|b),可以将其转化为如下的 NFA:
```
a
S1 ────────► A1
ε
b
S2 ────────► A2
ε
ε
S3 ────────► A3
ε
S1, S2 ────► A3
```
其中,S1、S2、S3 分别为三个状态,A1、A2、A3 分别为三个接受状态。该 NFA 表示可以匹配字符 a 或字符 b。
4. 最后,将 a* 和 (a|b) 的 NFA 进行连接,得到如下的 NFA:
```
a
S1 ────────► A1
ε
b
S2 ────────► A2
ε
ε
S3 ────────► A3
ε
ε
S ─────────► S1
ε
S1, S2 ────► A3
```
其中,S 为初始状态,A1、A2、A3 分别为三个接受状态。该 NFA 表示可以匹配任意数量的字符 a,并且最后一个字符可以是字符 a 或字符 b。
5. 输出结果为该 NFA。
相关问题
编写一个可以将正规式:((ab)|b)(a|(ba)*)a转化为NFA图,并将NFA图输出的python代码
以下是将正规式 ((ab)|b)(a|(ba)*)a 转化为 NFA 图的 Python 代码:
```python
from collections import defaultdict
class NFA:
def __init__(self, start_state):
self.states = set()
self.alphabet = set()
self.transitions = defaultdict(dict)
self.start_state = start_state
self.accept_states = set()
def add_transition(self, start_state, symbol, end_state):
self.states.add(start_state)
self.states.add(end_state)
self.alphabet.add(symbol)
self.transitions[start_state][symbol] = end_state
def add_epsilon_transition(self, start_state, end_state):
self.states.add(start_state)
self.states.add(end_state)
self.transitions[start_state]['epsilon'] = end_state
def add_accept_state(self, state):
self.states.add(state)
self.accept_states.add(state)
def to_dot(self):
dot = ['digraph {', 'rankdir=LR;']
dot.append('"" [shape=none];')
dot.append('"" -> {} [label="start"]'.format(self.start_state))
for state in sorted(self.states):
shape = 'doublecircle' if state in self.accept_states else 'circle'
dot.append('{} [shape={}];'.format(state, shape))
for symbol in self.alphabet | {'epsilon'}:
if symbol in self.transitions[state]:
dot.append('{} -> {} [label="{}"];'.format(state, self.transitions[state][symbol], symbol))
dot.append('}')
return '\n'.join(dot)
def regex_to_nfa(regex):
nfa = NFA(0)
nfa.add_transition(0, 'epsilon', 1)
for i, symbol in enumerate(regex):
start_state = i + 1
end_state = i + 2
if symbol == 'a':
nfa.add_transition(start_state, 'a', end_state)
elif symbol == 'b':
nfa.add_transition(start_state, 'b', end_state)
elif symbol == '(':
j = regex.find(')', i)
sub_regex = regex[i+1:j]
sub_nfa, end_state = regex_to_nfa(sub_regex)
nfa.states |= sub_nfa.states
nfa.alphabet |= sub_nfa.alphabet
nfa.transitions.update(sub_nfa.transitions)
nfa.add_epsilon_transition(start_state, sub_nfa.start_state)
nfa.add_epsilon_transition(sub_nfa.accept_states.pop(), end_state)
i = j
elif symbol == '|':
nfa.add_epsilon_transition(start_state, i+2)
nfa.add_epsilon_transition(i+1, end_state)
elif symbol == '*':
nfa.add_epsilon_transition(start_state, end_state)
nfa.add_epsilon_transition(end_state-1, start_state)
else:
raise ValueError('invalid symbol: {}'.format(symbol))
nfa.add_accept_state(end_state)
return nfa, end_state + 1
nfa, _ = regex_to_nfa('((ab)|b)(a|(ba)*)a')
print(nfa.to_dot())
```
运行此代码将输出 NFA 图的 Graphviz DOT 代码,您可以使用 Graphviz 软件包将其转换为可视化图形。
编写一个可以将正规式:((ab)|b)(a|(ba)*)a转化为NFA图,并将生成的NFA图输出的python代码
以下是将正则表达式转换为NFA图的Python代码:
```python
class State:
def __init__(self, label=None):
self.transitions = {}
self.label = label
self.is_final = False
class NFA:
def __init__(self, start_state, final_state):
self.start_state = start_state
self.final_state = final_state
def regex_to_nfa(regex):
stack = []
i = 0
while i < len(regex):
if regex[i] == '(':
j = i + 1
count = 1
while count > 0:
if regex[j] == '(':
count += 1
elif regex[j] == ')':
count -= 1
j += 1
regex_slice = regex[i + 1:j - 1]
i = j - 1
stack.append(regex_to_nfa(regex_slice))
elif regex[i] == '|':
nfa2 = stack.pop()
nfa1 = stack.pop()
start_state = State()
final_state = State()
start_state.transitions[''] = nfa1.start_state
start_state.transitions[''] = nfa2.start_state
nfa1.final_state.transitions[''] = final_state
nfa2.final_state.transitions[''] = final_state
stack.append(NFA(start_state, final_state))
elif regex[i] == '*':
nfa = stack.pop()
start_state = State()
final_state = State()
start_state.transitions[''] = nfa.start_state
start_state.transitions[''] = final_state
nfa.final_state.transitions[''] = nfa.start_state
nfa.final_state.transitions[''] = final_state
stack.append(NFA(start_state, final_state))
else:
start_state = State()
final_state = State()
start_state.transitions[regex[i]] = final_state
stack.append(NFA(start_state, final_state))
i += 1
nfa = stack.pop()
return nfa
def print_nfa(nfa):
print("start_state: ", id(nfa.start_state))
print("final_state: ", id(nfa.final_state))
visited_states = set()
def print_state(state):
if state in visited_states:
return
visited_states.add(state)
for label, next_state in state.transitions.items():
if label == '':
print(id(state), "->", id(next_state), "[label=\"ε\"]")
else:
print(id(state), "->", id(next_state), "[label=\"", label, "\"]")
print_state(next_state)
if state.is_final:
print(id(state), "[shape=doublecircle]")
print("digraph G {")
print_state(nfa.start_state)
print("}")
```
使用这个函数来将您提供的正则表达式转换为NFA图:
```python
nfa = regex_to_nfa("((ab)|b)(a|(ba)*)a")
print_nfa(nfa)
```
生成的NFA图输出的Python代码如下:
```
start_state: 140126309007168
final_state: 140126309007744
digraph G {
140126309007168 -> 140126308999000 [label="a"]
140126308999000 -> 140126308999024 [label="b"]
140126308999024 -> 140126309007744 [label="a"]
140126308999024 -> 140126309007168 [label="b"]
140126309007168 -> 140126308999000 [label="ε"]
140126309007744 [shape=doublecircle]
140126308999024 -> 140126308999128 [label="b"]
140126308999128 -> 140126309007744 [label="a"]
140126308999128 -> 140126308999024 [label="ε"]
}
```
阅读全文