temp.transpose(-2, -1)
时间: 2024-01-10 15:03:18 浏览: 103
这段代码是将张量(tensor)temp的倒数第二维和倒数第一维进行转置。在PyTorch中,transpose函数可以用来进行张量的转置操作。transpose函数的第一个参数表示指定转置的维度1,第二个参数表示指定转置的维度2。如果将维度1和维度2指定为负数,则表示从后往前数的维度。因此,temp.transpose(-2, -1)的作用是将temp的倒数第二维和倒数第一维进行转置,返回一个新的张量。
相关问题
def Dice_loss(inputs, target, beta=1, smooth = 1e-5): n, c, h, w = inputs.size() nt, ht, wt, ct = target.size() if h != ht and w != wt: inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True) temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1) temp_target = target.view(n, -1, ct) #--------------------------------------------# # 计算dice loss #--------------------------------------------# tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1]) fp = torch.sum(temp_inputs , axis=[0,1]) - tp fn = torch.sum(temp_target[...,:-1] , axis=[0,1]) - tp score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth) dice_loss = 1 - torch.mean(score) return dice_loss
这段代码实现的是 Dice Loss,是一种常用的用于医学图像分割任务中的损失函数,用于评估模型的分割结果和真实标签之间的相似度。其中,输入的参数包括:
- inputs:模型的输出,是一个大小为 (n, c, h, w) 的张量,其中 n 表示 batch size,c 表示类别数,h 和 w 表示输入图片的高和宽。
- target:真实标签,是一个大小为 (n, h, w, ct) 的张量,其中 ct 表示标签的通道数。
- beta:调节因子,用于平衡精度和召回率,默认为 1。
- smooth:平滑参数,用于避免除以 0 的情况,默认为 1e-5。
该函数的返回值是一个标量,表示 Dice Loss 的值。
def Focal_Loss(inputs, target, cls_weights, num_classes=21, alpha=0.5, gamma=2): n, c, h, w = inputs.size() nt, ht, wt = target.size() if h != ht and w != wt: inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True) temp_inputs = inputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c) temp_target = target.view(-1) logpt = -nn.CrossEntropyLoss(weight=cls_weights, ignore_index=num_classes, reduction='none')(temp_inputs, temp_target) pt = torch.exp(logpt) if alpha is not None: logpt *= alpha loss = -((1 - pt) ** gamma) * logpt loss = loss.mean() return loss 是什么意思
这段代码实现了 Focal Loss,是一种用于解决分类问题中,样本不平衡导致的分类精度下降的方法。其中,输入的参数包括:
- inputs:模型的输出,是一个大小为 (n, c, h, w) 的张量,其中 n 表示 batch size,c 表示类别数,h 和 w 表示输入图片的高和宽。
- target:真实标签,是一个大小为 (n, h, w) 的张量。
- cls_weights:各个类别的权重,是一个大小为 (c,) 的张量。
- num_classes:类别数,默认为 21。
- alpha:平衡因子,控制正负样本的权重比例,默认为 0.5。
- gamma:调节因子,控制易错样本的权重,默认为 2。
该函数的返回值是一个标量,表示 Focal Loss 的值。
阅读全文